探索快遞物流網(wǎng)的離散數(shù)學(xué)模型
doi: 10.11999/JEIT240767
-
1.
蘭州財經(jīng)大學(xué)信息工程與人工智能學(xué)院 蘭州 730020
-
2.
甘肅省智慧商務(wù)重點實驗室 蘭州 730020
-
3.
西北師范大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院 蘭州 730070
Exploring The Discrete Mathematical Models of Express Logistics Networks
-
1.
School of Information Engineering and Artificial Intelligence, Lanzhou University of Finance and Economics, Lanzhou 730020, China
-
2.
Gansu Provincial Key Laboratory of Smart Commerce, Lanzhou 730020, China
-
3.
College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
-
摘要: 針對快遞物流網(wǎng)絡(luò),該文研究:(1) 構(gòu)建全新的快遞物流網(wǎng)的離散數(shù)學(xué)模型 (又稱拓撲模型);(2) 根據(jù)理論基礎(chǔ)從圖論學(xué)科的角度對快遞物流網(wǎng)絡(luò)拓撲模型進行定性分析,通過數(shù)學(xué)模型法結(jié)合參數(shù)統(tǒng)計、優(yōu)化算法等數(shù)學(xué)手段對模型進行定量分析。對拓撲模型中的邊賦予路長權(quán)重,并為快遞物流網(wǎng)拓撲模型設(shè)計了新的優(yōu)化算法(集散算法、控制集算法、預(yù)先指定子圖算法);(3) 以蘭州市城關(guān)區(qū)主城區(qū)作為快遞物流網(wǎng)拓撲模型的應(yīng)用實例,實施了相應(yīng)的優(yōu)化算法。同時針對模型計算面臨的復(fù)雜度等困難提出了解決辦法,為進一步完善、優(yōu)化快遞物流網(wǎng)絡(luò)提供了一定參考。
-
關(guān)鍵詞:
- 快遞物流網(wǎng) /
- 拓撲模型 /
- 優(yōu)化算法 /
- 計算復(fù)雜度 /
- 賦權(quán)圖
Abstract:Objective With the rapid growth of e-commerce, express delivery volumes have surged, placing increased demands on existing logistics infrastructure and operational models. An efficient express logistics network can help reduce costs, improve transportation efficiency, and enhance logistics management. Therefore, analyzing the structure and operation of express logistics networks, as well as identifying ways to optimize these networks, has become a critical focus for logistics companies. The goal is to improve operational efficiency and support balanced regional economic development. Current research on express logistics networks involves constructing various models, such as mathematical optimization models, decision models, and network evaluation models, and applying algorithms like heuristic, genetic, and greedy algorithms, as well as those based on complex network theory, to optimize network structure, performance, and planning decisions. However, a limitation of existing studies is the lack of models closely aligned with the practical realities of express logistics, and the absence of effective new algorithms to address the complex, evolving challenges faced by express logistics networks. This study proposes a novel discrete mathematical model, also known as a topology model, for express logistics networks from the perspective of graph theory. The model comprises a road network (physical network), a topology network (mathematical model), and an information network (soft control system), providing a closer alignment with real-world express logistics scenarios. Through both qualitative and quantitative analyses of the model, along with the design of corresponding optimization algorithms, this research offers a reference for the in-depth study and scientific optimization of express logistics networks. Methods This study employs various methods: (1) Mathematical Model Construction: A new discrete mathematical model for express logistics networks is developed, accounting for the nonlinear, stochastic, and discrete characteristics of the network. The model integrates physical, topological, and informational networks. (2) Qualitative Analysis: The topology model of the express logistics network is qualitatively analyzed using graph theory concepts and algorithms, where the network topology model is represented as a weighted structure in graph theory. (3) Quantitative Analysis: The mathematical model is analyzed quantitatively using statistical parameters, optimization algorithms, and other mathematical techniques. The edges in the topological model are assigned route length weights, and new optimization algorithms—such as the distribution algorithm, control set algorithm, and pre-designated subgraph algorithm—are proposed to optimize the express logistics network topology. (4) Case Study and Optimization: The topology model is applied to the express logistics network in the central district of Lanzhou City (Chengguan District), where corresponding optimization algorithms are implemented. Solutions to challenges, such as the computational complexity of the model, are proposed. Results and Discussions The mathematical model in this study is a topological graph based on graph theory, where various matrices are used to input the express logistics network’s topology into the computer for subsequent calculations. Innovation 1: A topological model of the express logistics network is created. Innovation 2: The topological model of the express logistics network is optimized and quantitatively analyzed, and a minimum weight path m-control set algorithm (m ≥ 2) and a pre-designated subgraph control algorithm are developed(Algorithm 3, Algorithm 4). These models and algorithms are then applied to the study of the express logistics network in the Chengguan District of Lanzhou City. Innovation 3: In response to the large-scale data and the limitations in computer computing power, as well as the absence of a super-large computer at the author’s institution, the large-scale matrix calculation is divided into smaller regional matrices for optimized computation. Innovation 4: Different optimization algorithms are selected for different areas of the road network map of Lanzhou City’s Chengguan District ( Fig. 4 ,Fig. 5 ). Multiple calculation results are integrated to obtain the minimum weight path of the pre-designated subgraph for the Chengguan District, validating the effectiveness of the model and algorithms.Conclusions This study addresses existing issues in express logistics network research through the aforementioned work and innovations. A new model and new algorithms, better suited to practical logistics scenarios, are developed. Based on the case study, new problems and methods are proposed, offering further possibilities for optimizing express logistics networks. With the rapid development of emerging technologies such as the Internet of Things, big data, and artificial intelligence, future research could focus on deeply integrating these technologies to enable real-time and accurate collection and analysis of logistics data. Access to high-quality and diverse data can further improve the accuracy of the model’s calculations and enhance intelligent decision-making capabilities. This study has only considered assigning route length weights to the edges in the topological model; future work may explore multi-objective, multi-weight optimization models for express logistics networks to meet the practical decision-making needs of different logistics service providers. -
1 無約束快遞集散 CD-算法
輸入:集裝$C(k) = \{ {A_{k,1}},{A_{k,2}}, \cdots ,{A_{k,n(k)}}\} $,其中${A_{k,j}}$是貨物,且有${A_{k,j}} \ne {A_{k,t}}$, $j \ne t$ 輸出:分散$D(k + 1)$ 在一般的快遞物流網(wǎng)中,不會為一個貨物進行 式(1)的無約束快遞集散,而是進行下面的多個快遞貨物的集裝和分散: 步驟1 集裝$C(k)$被分散,形成分散$D(k)$: (1) 分散集裝$C(k)$的貨物,其中有貨物${{\mathrm{ED}}_k} = \{ {A_{{k_i},1}},{A_{{k_i},2}}, \cdots ,{A_{{k_i},a({k_i})}}\} $被發(fā)送到客戶手中; (2) 又有新的貨物${{\mathrm{NB}}_k} = \{ {B_{k,1}},{B_{k,2}}, \cdots ,{B_{k,m(k)}}\} $補充進來。 步驟2 形成集裝$C(k + 1)$:將集合$(C(k)\backslash {{\mathrm{ED}}_k}) \cup {{\mathrm{NB}}_k}$中的貨物組裝成小集裝模塊${C_{k + 1,1}},{C_{k + 1,2}}, \cdots ,{C_{k + 1,n(k + 1)}}$,其中
$n(k + 1) \le n(k) - a({k_i}) + m(k)$,使得集裝$C(k + 1)$由這$n(k + 1)$個集裝模塊構(gòu)成。步驟3 由集裝$C(k + 1)$返回分散$D(k + 1)$。 下載: 導(dǎo)出CSV
2 最小權(quán)重路控制集算法
輸入:權(quán)重路拓撲模型 ${G_{\rm{weight}}}(t)$ 輸出:權(quán)重路拓撲模型 ${G_{\rm{weight}}}(t)$ 的一個最小權(quán)重路控制集 步驟1 選擇節(jié)點 ${u_1} \in V({G_{\rm{weight}}}(t))$ 以及與節(jié)點 ${u_1}$ 相鄰的節(jié)點 ${w_1} \in {N_{\rm{ei}}}({u_1})$,使得路 $P({u_1},{w_1})$ 的權(quán)重之和為最小。得到節(jié)點集
合: ${U_1} \leftarrow \{ {u_1}\} $, ${W_1} \leftarrow \{ {w_1}\} $, ${V_1} = V({G_{\rm{weight}}}(t))\backslash ({U_1} \cup {W_1})$。步驟2 選擇節(jié)點 ${u_k} \in {V_k}$ 以及與節(jié)點 ${u_k}$ 相鄰的節(jié)點 ${w_k} \in {N_{\rm{ei}}}({u_k})$,使得路 $P({u_k},{w_k})$ 的權(quán)重之和是最小的,且 ${w_k}\not \in {U_{k - 1}}$。得到
節(jié)點集合:${U_k} \leftarrow {U_{k - 1}} \cup \{ {u_k}\} $, ${W_k} \leftarrow {W_{k - 1}} \cup \{ {w_k}\} $, ${V_k} = V({G_{\rm{weight}}}(t))\backslash ({U_k} \cup {W_k})$。轉(zhuǎn)到步驟3。步驟3 如果有節(jié)點 $x \in {V_k}$ 使得路 $P(x,y)$ ($y \in {N_{\rm{ei}}}(x)$) 的權(quán)重之和達到最小值,但是 $y\not \in {W_k}$,則令 ${W_k} \leftarrow {W_{k - 1}} \cup \{ x\} $,以及
${U_k} \leftarrow {U_{k - 1}} \cup \{ y\} $, ${V_k} = V({G_{\rm{weight}}}(t))\backslash ({U_k} \cup {W_k})$。轉(zhuǎn)到步驟4。步驟4 如果有 $|{V_k}| \ge 2$,轉(zhuǎn)到步驟2。否則,轉(zhuǎn)到步驟5。 步驟5 如果 ${V_k} = \{ z\} $,且有節(jié)點$ z' \in {N_{\rm{ei}}}(z) $,使得路 $ P(z,z') $ 的權(quán)重之和達到最小。當(dāng)節(jié)點 $ z' \in {U_k} $,則令 ${W_{k + 1}} \leftarrow {W_k} \cup \{ z\} $,
${U_{k + 1}} \leftarrow {U_k}$;當(dāng)節(jié)點 $ z' \in {W_k} $,則令 ${U_{k + 1}} \leftarrow {U_k} \cup \{ z\} $, ${W_{k + 1}} \leftarrow {W_k}$, ${V_{k + 1}} = V({G_{\rm{weight}}}(t))\backslash ({U_{k + 1}} \cup {W_{k + 1}}) = \varnothing $。轉(zhuǎn)到步驟6。步驟6 返回權(quán)重路拓撲模型 ${G_{\rm{weight}}}(t)$ 的最小權(quán)重路控制集 ${W_{k + 1}}$。 下載: 導(dǎo)出CSV
3 最小權(quán)重路 m-控制集算法 (m≥2)
輸入:在最小權(quán)重路控制集算法2中,最小權(quán)重路控制集 ${W_{k + 1}}$ 導(dǎo)出權(quán)重路拓撲圖${H_1} = G[{W_{k + 1}}]$,它是權(quán)重路拓撲模型 ${G_{\rm{weight}}}(t)$ 的一
個子圖輸出:權(quán)重路拓撲圖 ${H_m}$ 的最小權(quán)重路 m-控制集算法 (m≥2) 步驟1 對圖${H_1} = G[{W_{k + 1}}]$運用最小權(quán)重路控制集算法,得到權(quán)重路拓撲圖${H_1}$的一個最小權(quán)重路控制集${S_1}$,它是權(quán)重路拓撲模型
${G_{\rm{weight}}}(t)$的一個最小權(quán)重路 2-控制集,使得權(quán)重路拓撲模型${G_{\rm{weight}}}(t)$的任何一個節(jié)點$a$滿足:$a \in {S_1}$,或者有節(jié)點$b \in {S_1}$,使得路
$P(a,b)$的權(quán)重之和達到最小值,且有邊集$|E(P(a,b))| \le 2$。步驟2 節(jié)點集${S_1}$導(dǎo)出權(quán)重路拓撲圖${H_2} = G[{S_1}]$。實施最小權(quán)重路控制集算法2,得到權(quán)重路拓撲圖${H_1}$的一個最小權(quán)重路控制集${S_2}$,它
是權(quán)重路拓撲模型${G_{\rm{weight}}}(t)$的一個最小權(quán)重路 3-控制集。步驟$(m - 1)$ 節(jié)點集${S_{m - 2}}$ 導(dǎo)出權(quán)重路拓撲圖${H_{m - 1}} = G[{S_{m - 2}}]$。實施最小權(quán)重路控制集算法2后,得到權(quán)重路拓撲圖${H_m}$的一個最
小權(quán)重路控制集${S_{m - 1}}$,它是權(quán)重路拓撲模型${G_{\rm{weight}}}(t)$的一個最小權(quán)重路m-控制集。下載: 導(dǎo)出CSV
4 預(yù)先指定子圖控制算法
輸入:連通邊賦權(quán)圖$G(t)$,指定連通圖$G(t)$的一個真子圖$H(t)$ 輸出:連通圖$G(t)$的一個子圖$L(t)$,使得$H(t) \subset L(t)$,每個節(jié)點$u \in V(L(t))$到真子圖$H(t)$的距離最小 步驟1 選擇最大的節(jié)點子集合${V_1} \subset {V^*} = V(G(t))\backslash V(H(t))$,使對每一個節(jié)點 $x \in {V_1}$,有節(jié)點$y \in V(H(t))$ 與x 相鄰,并且邊
$xy \in {E^*} = E(G)\backslash E(H(t))$ 的權(quán)重最小,${V_1}$叫做 1-層節(jié)點集。做:${E_1} \leftarrow E(H(t))$, ${E_2} \leftarrow ({E_1} \cup E({V_1},V(H(t)))$,其中邊集合
$E({V_1},V(H(t)))$中的邊$ xy $權(quán)重最小,且滿足$x \in {V_1}$和$y \in V(H(t))$。步驟2 選擇最大的節(jié)點子集合${V_2} \subseteq {V^*}\backslash {V_1}$,使對每一個節(jié)點$x \in {V_2}$,有節(jié)點$y \in {V^*}\backslash {V_1}$與x相鄰,并且邊$xy \in {E^*}\backslash E({V_1},V(H(t)))$ 的
權(quán)重最小,${V_2}$叫做 2-層節(jié)點集。做:${E_3} \leftarrow {E_2} \cup E({V_2},{V_1})$,其中邊集合$E({V_2},{V_1})$中的邊$ xy $權(quán)重最小,且滿足$x \in {V_1}$和$y \in {V_2}$。步驟3 如果$k$-層節(jié)點集${V_k} = {V^*}\backslash \cup _{i = 1}^{k - 1}{V_i} \ne \varnothing $,轉(zhuǎn)到步驟2,否則轉(zhuǎn)到步驟4。 步驟4 如果$k$-層節(jié)點集${V_k} = {V^*}\backslash \cup _{i = 1}^{k - 1}{V_i} = \varnothing $,做:$V(L(t)) \leftarrow V(G(t))$, $E(L(t)) \leftarrow {E_2} \cup E({V_2},{V_1}) \cup E({V_3},{V_2}) \cup \cdots \cup E({V_{k - 1}},{V_{k - 2}})$
到步驟5步驟5 返回連通圖$G(t)$的子圖$L(t)$,每個節(jié)點 $u \in V(L(t))$到真子圖$H(t)$的距離最小。 下載: 導(dǎo)出CSV
表 1 相關(guān)算法比較和評估
算法 核心思想 性能比較及適用范圍 最小權(quán)重路控制集算法 通過貪心選擇和迭代構(gòu)建的方式,逐步逼近最優(yōu)解,
即在滿足控制集條件下使權(quán)重之和最小。計算過程較為直觀,其時間、空間復(fù)雜度與圖的規(guī)模和迭代次數(shù)有關(guān),可能在大規(guī)模復(fù)雜網(wǎng)絡(luò)中效率較低。適用于規(guī)模較小或結(jié)構(gòu)簡單、連通性較強的網(wǎng)絡(luò)。 最小權(quán)重路 m-控制集(m≥2)算法 通過基于子圖的迭代操作,利用算法 2作為基礎(chǔ)步驟,逐步構(gòu)建出權(quán)重路拓撲模型的最小權(quán)重m-控制集。
這種方法通過分解問題為多個子問題來解決尋找
特定階數(shù)最小權(quán)重控制集的復(fù)雜問題。在計算上比最小權(quán)重路控制集算法更復(fù)雜,但通過多次迭代和基于子圖的操作,其求解精度相對算法 2會更高。適用于多層網(wǎng)絡(luò)的層次化資源管理等,特別是當(dāng)問題的求解依賴于前一階控制集的結(jié)果,并且需要不斷細化和擴展控制集以滿足更復(fù)雜的條件時。 預(yù)先指定子圖控制算法 算法通過層次選擇節(jié)點集逐步找到最優(yōu)路徑。通過
最大化節(jié)點集和最小化邊權(quán)重來保證每個節(jié)點都與
指定的真子圖保持最小距離。在優(yōu)化子圖和控制集的過程中,能更好地處理特定拓撲結(jié)構(gòu),計算復(fù)雜度也是較高的。適合處理較為特殊的拓撲結(jié)構(gòu),如環(huán)型、樹型網(wǎng)等,尤其適合實際應(yīng)用中先給定子圖的情況。 下載: 導(dǎo)出CSV
-
[1] 王詠儀. 考慮擁堵的軸輻式快遞網(wǎng)絡(luò)的布局優(yōu)化與資源均衡研究[J]. 上海管理科學(xué), 2024, 46(1): 72–76,95. doi: 10.3969/j.issn.1005-9679.2024.01.014.WANG Yongyi. Layout optimization and resource balancing when considering congestion on the Hub-and-Spoke express network[J]. Shanghai Management Science, 2024, 46(1): 72–76,95. doi: 10.3969/j.issn.1005-9679.2024.01.014. [2] 常蘭, 劉湃. 碳交易視角下綠色快遞多式聯(lián)運網(wǎng)絡(luò)優(yōu)化[J]. 重慶電力高等專科學(xué)校學(xué)報, 2023, 28(6): 37–43. doi: 10.3969/j.issn.1008-8032.2023.06.008.CHANG Lan and LIU Pai. A study on the network optimization of the multimodal transportation of green delivery from the perspective of carbon trading[J]. Journal of Chongqing Electric Power College, 2023, 28(6): 37–43. doi: 10.3969/j.issn.1008-8032.2023.06.008. [3] 吳旗韜, 李苑庭, 吳海玲, 等. 基于關(guān)鍵節(jié)點積極效應(yīng)模型的快遞物流網(wǎng)絡(luò)點集挖掘[J]. 復(fù)雜系統(tǒng)與復(fù)雜性科學(xué), 2024, 21(4): 28–33. doi: 10.13306/j.1672-3813.2024.04.005.WU Qitao, LI Yuanting, WU Hailing, et al. Nodes-set mining of express logistics network based on the key player problem-positive model[J]. Complex Systems and Complexity Science, 2024, 21(4): 28–33. doi: 10.13306/j.1672-3813.2024.04.005. [4] 李悅, 秦威. 基于混合軸輻式網(wǎng)絡(luò)的快遞運輸路徑再設(shè)計[J]. 工業(yè)工程, 2023, 26(6): 93–100. doi: 10.3969/j.issn.1007-7375.2023.06.010.LI Yue and QIN Wei. Re-design of express transportation route based on hybrid Hub-and-Spoke network[J]. Industrial Engineering Journal, 2023, 26(6): 93–100. doi: 10.3969/j.issn.1007-7375.2023.06.010. [5] 張建軍, 王嘉銘, 王天浩, 等. 低碳情景下的復(fù)合軸輻式快遞網(wǎng)絡(luò)規(guī)劃[J]. 同濟大學(xué)學(xué)報(自然科學(xué)版), 2023, 51(2): 288–294. doi: 10.11908/j.issn.0253-374x.21403.ZHANG Jianjun, WANG Jiaming, WANG Tianhao, et al. Multi-layered multi-service-leveled hybrid hub-spoke network design in low-carbon scenarios[J]. Journal of Tongji University (Natural Science), 2023, 51(2): 288–294. doi: 10.11908/j.issn.0253-374x.21403. [6] 楊從平, 鄭世玨, 黨永杰, 等. 基于連接成本的快遞網(wǎng)絡(luò)擁塞控制[J]. 中國管理科學(xué), 2017, 25(4): 143–151. doi: 10.16381/j.cnki.issn1003-207x.2017.04.017.YANG Congping, ZHENG Shijue, DANG Yongjie, et al. Congestion control of express delivery network based on connection cost[J]. Chinese Journal of Management Science, 2017, 25(4): 143–151. doi: 10.16381/j.cnki.issn1003-207x.2017.04.017. [7] 楊從平, 鄭世玨, 黨永杰, 等. 基于配送時效和連接成本的快遞網(wǎng)絡(luò)優(yōu)化[J]. 系統(tǒng)工程理論與實踐, 2016, 36(8): 1983–1992. doi: 10.12011/1000-6788(2016)08-1983-10.YANG Congping, ZHENG Shijue, DANG Yongjie, et al. Optimization of express delivery network based on delivery timeliness and connection cost[J]. Systems Engineering-Theory & Practice, 2016, 36(8): 1983–1992. doi: 10.12011/1000-6788(2016)08-1983-10. [8] 趙晉, 張建軍, 嚴蔡華. 允許直達的混合軸輻式快遞網(wǎng)絡(luò)規(guī)劃模型與算法研究[J]. 中國管理科學(xué), 2016, 24(11): 58–65. doi: 10.16381/j.cnki.issn1003-207x.2016.11.007.ZHAO Jin, ZHANG Jianjun, and YAN Caihua. Research on hybrid hub-spoke express network decision with Point-to-point direct shipment[J]. Chinese Journal of Management Science, 2016, 24(11): 58–65. doi: 10.16381/j.cnki.issn1003-207x.2016.11.007. [9] 鄭長江, 胡歡, 杜牧青. 考慮樞紐失效的多式聯(lián)運快遞網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計[J]. 吉林大學(xué)學(xué)報(工學(xué)版), 2023, 53(8): 2304–2311. doi: 10.13229/j.cnki.jdxbgxb.20211128.ZHENG Changjiang, HU Huan, and DU Muqing. Design of multimodal express delivery network structure considering hub failure[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(8): 2304–2311. doi: 10.13229/j.cnki.jdxbgxb.20211128. [10] 李苑君, 吳旗韜, 吳康敏, 等. “流空間”視角的電子商務(wù)快遞物流網(wǎng)絡(luò)結(jié)構(gòu)研究——以珠三角城市群為例[J]. 地域研究與開發(fā), 2021, 40(2): 20–26. doi: 10.3969/j.issn.1003-2363.2021.02.004.LI Yuanjun, WU Qitao, WU Kangmin, et al. Structure of E-commerce express logistics network from the perspective of flow space: Take the Pearl River Delta urban agglomeration as example[J]. Areal Research and Development, 2021, 40(2): 20–26. doi: 10.3969/j.issn.1003-2363.2021.02.004. [11] 牟能冶, 康秋萍, 賈程方. 突發(fā)事件影響下的城市快遞網(wǎng)絡(luò)脆弱性評估[J]. 中國安全科學(xué)學(xué)報, 2020, 30(12): 125–132. doi: 10.16265/j.cnki.issn1003-3033.2020.12.018.MU Nengye, KANG Qiuping, and JIA Chengfang. Vulnerability assessment of urban express networks under influence of emergencies[J]. China Safety Science Journal, 2020, 30(12): 125–132. doi: 10.16265/j.cnki.issn1003-3033.2020.12.018. [12] 牟能冶, 康秋萍. 基于節(jié)點重要度網(wǎng)絡(luò)結(jié)構(gòu)熵的城市快遞網(wǎng)絡(luò)抗毀性測度[J]. 綜合運輸, 2020, 42(3): 108–113.MU Nengye and KANG Qiuping. Invulnerability measurement of urban express network based on node importance network structure entropy[J]. China Transportation Review, 2020, 42(3): 108–113. [13] 謝逢潔, 崔文田. 加權(quán)快遞網(wǎng)絡(luò)魯棒性分析及優(yōu)化[J]. 系統(tǒng)工程理論與實踐, 2016, 36(9): 2391–2399. doi: 10.12011/1000-6788(2016)09-2391-09.XIE Fengjie and CUI Wentian. Analyzing and optimizing the robustness of weighted express networks[J]. Systems Engineering-Theory & Practice, 2016, 36(9): 2391–2399. doi: 10.12011/1000-6788(2016)09-2391-09. [14] Bondy A and Murty U S R. Graph Theory[M]. London, UK: Springer, 2008. [15] Gallian J A. A dynamic survey of graph labeling[J]. Electronic Journal of Combinatorics, 2022, 6(25): 4–623. [16] 卜月華, 王維凡, 呂新忠. 圖論及其應(yīng)用[M]. 2版. 南京: 東南大學(xué)出版社, 2015.BU Yuehua, WANG Weifan, and LV Xinzhong. Graph Theory With Applications[M]. Nanjing: Southeast University Press, 2015. [17] YAO Bing and WANG Hongyu. Recent colorings and labelings in topological coding[J]. arXiv: 2106.15254, 2021. doi: 10.48550/arXiv.2106.15254. [18] 蘭州市統(tǒng)計局. 《蘭州統(tǒng)計年鑒》2023年[EB/OL]. https://tjj.lanzhou.gov.cn/art/2024/1/31/art_4866_1315620.html, 2024.Lanzhou Municipal Bureau of Statistics. Lanzhou Statistical Yearbook 2023[EB/OL]. https://tjj.lanzhou.gov.cn/art/2024/1/31/art_4866_1315620.html, 2024. [19] 甘肅地方史志網(wǎng). 《蘭州市城關(guān)區(qū)年鑒2024》[EB/OL]. 蘭州市城關(guān)區(qū)年鑒. http: //www. gsdfszw. org. cn/gsxnj/lzs_297/lzscgqnj123/202410/P020241024621772314554. pdf, 2024. Gansu Local History Network. Yearbook of Chengguan District, Lanzhou City 2024[EB/OL]. 蘭州市城關(guān)區(qū)年鑒. http://www.gsdfszw.org.cn/gsxnj/lzs_297/lzscgqnj123/202410/P020241024621772314554.pdf, 2024. [20] 王曉敏, 蘇靜, 姚兵. 基于格思想的圖結(jié)構(gòu)相似問題的算法[J]. 計算機科學(xué), 2021, 48(S1): 543–551. doi: 10.11896/jsjkx.201100167.WANG Xiaomin, SU Jing, and YAO Bing. Algorithms based on lattice thought for graph structure similarity[J]. Computer Science, 2021, 48(S1): 543–551. doi: 10.11896/jsjkx.201100167. -