一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

交叉熵迭代輔助的跳時圖案估計與多跳相干合并算法

苗夏箐 吳睿 岳平越 張瑞 王帥 潘高峰

苗夏箐, 吳睿, 岳平越, 張瑞, 王帥, 潘高峰. 交叉熵迭代輔助的跳時圖案估計與多跳相干合并算法[J]. 電子與信息學報. doi: 10.11999/JEIT240677
引用本文: 苗夏箐, 吳睿, 岳平越, 張瑞, 王帥, 潘高峰. 交叉熵迭代輔助的跳時圖案估計與多跳相干合并算法[J]. 電子與信息學報. doi: 10.11999/JEIT240677
MIAO Xiaqing, WU Rui, YUE Pingyue, ZHANG Rui, WANG Shuai, PAN Gaofeng. Cross-Entropy Iteration Aided Time-Hopping Pattern Estimation and Multi-hop Coherent Combining Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240677
Citation: MIAO Xiaqing, WU Rui, YUE Pingyue, ZHANG Rui, WANG Shuai, PAN Gaofeng. Cross-Entropy Iteration Aided Time-Hopping Pattern Estimation and Multi-hop Coherent Combining Algorithm[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240677

交叉熵迭代輔助的跳時圖案估計與多跳相干合并算法

doi: 10.11999/JEIT240677
詳細信息
    作者簡介:

    苗夏箐:男,博士,研究方向為衛(wèi)星通信、安全通信

    吳睿:男,碩士生,研究方向為衛(wèi)星通信

    岳平越:男,博士后,研究方向為衛(wèi)星通信

    張瑞:女,博士,研究方向為空天隱蔽通信、衛(wèi)星通信、太赫茲通信、納米傳感器網(wǎng)絡

    王帥:男,教授,研究方向為衛(wèi)星通信、抗干擾通信、抗偵測通信、飛行器協(xié)同數(shù)據(jù)鏈、衛(wèi)星載荷專用測試技術、數(shù)據(jù)鏈專用測試技術

    潘高峰:男,博士,研究方向為面向空天信息網(wǎng)絡的信號處理、性能建模與優(yōu)化、安全傳輸策略設計

    通訊作者:

    張瑞 rui.zhang@bit.edu.cn

  • 中圖分類號: TN92

Cross-Entropy Iteration Aided Time-Hopping Pattern Estimation and Multi-hop Coherent Combining Algorithm

  • 摘要: 作為全球化通信網(wǎng)絡的重要組成部分,衛(wèi)星通信因其能夠實現(xiàn)全球無縫覆蓋和構建天地一體化信息網(wǎng)絡而備受關注。跳時(TH)作為一種常用的衛(wèi)星通信方式,具備強大的抗干擾能力、靈活的頻譜利用和高安全性。該文提出一種適用于衛(wèi)星通信的TH圖案隨機變化系統(tǒng),以進一步增強數(shù)據(jù)傳輸過程的安全性。針對發(fā)射功率受限的問題,該文提出多跳信號相干合并策略,并進一步在該策略指導下,面對接收信號信噪比(SNR)低的約束,提出了交叉熵(CE)迭代輔助的跳時圖案與多跳載波相位聯(lián)合估計算法,以合并信噪比損失為目標函數(shù),自適應調整待估參數(shù)的概率分布,從而快速收斂至最優(yōu)解附近。仿真實驗證明了該算法在迭代收斂速度、參數(shù)估計誤差以及合并解調誤碼率等方面的優(yōu)異性能。與傳統(tǒng)算法相比,所提算法在保持較低復雜度的同時,誤碼率(BER)性能接近理論最優(yōu),有效提高了衛(wèi)星TH通信系統(tǒng)在復雜環(huán)境下的穩(wěn)定性和可靠性。
  • 圖  1  跳時通信時隙結構示意圖

    圖  2  交叉熵迭代輔助的跳時圖案估計與相干合并算法框圖

    圖  3  $ {N_{\rm e}}/{N_{\rm c}} $對合并信噪比損失收斂性能的影響

    圖  4  跳時碼的估計正確率

    圖  5  載波相位估計RMSE

    圖  6  不同相位量化位數(shù)的解調誤碼率

    圖  7  所提算法與網(wǎng)格遍歷法的誤碼率對比

    圖  8  不同跳時碼變化范圍的合并信噪比損失

    圖  9  不同跳數(shù)合并的誤碼率性能

    1  交叉熵迭代輔助的跳時圖案估計與相干合并算法

     輸入:載波初相和跳時碼的量化候選組數(shù)$ {N_{\rm c}} $,優(yōu)選組數(shù)$ {N_{\rm e}} $,平滑系數(shù)$ \alpha $,最大迭代次數(shù)$ {I_{\max}} $,$ {N_{\rm f}} $幀數(shù)據(jù),載波初相量化比特位數(shù)$ {D_1} $,
     跳時碼量化比特位數(shù)$ {D_2} $;
     初始化:$ {N_{\rm f}} $幀信號的載波初相和跳時碼量化比特生成概率$ {\hat {\boldsymbol{p}}^1} = 0.5 \times {{\bf{1}}_{1 \times {N_{\rm f}}({D_1} + {D_2})}} $,$ {\hat {\boldsymbol{p}}^i} $元素為0或1的個數(shù)$ M = 0 $,迭代次數(shù)$ i = 1 $;
     while $ M \lt {N_{\rm f}}({D_1} + {D_2}) $ && $ 1 \le i \le {I_{\max}} $ do
     (1) 根據(jù)概率$ {\hat {\boldsymbol{p}}^i} $生成$ {N_{\rm c}} $組候選組參數(shù)向量;
     (2) 根據(jù)每組參數(shù)向量對$ {N_{\rm f}} $幀數(shù)據(jù)分別進行時隙選擇與載波初相補償,并進行多跳信號的相干合并;
     (3) 對每組參數(shù)向量得到的合并信號進行合并信噪比損失估計,將共$ {N_{\rm c}} $組估計結果按照從小到大排序;
     (4) 取合并信噪比損失最小的前$ {N_{\rm e}} $組作為優(yōu)選組,計算優(yōu)選組量化比特為1的概率$ {{\boldsymbol{p}}^{i + 1}} $,更新概率向量$ {\hat {\boldsymbol{p}}^{i + 1}} $;
     (5) 將合并信噪比損失最小的一組參數(shù)向量記為$ {\boldsymbol{q}}_{{\mathrm{tmp}}}^i $,其損失記為$ \gamma _{{\mathrm{tmp}}}^i $;
       if $ i = = 1 $ then
         $ {{\boldsymbol{q}}_{{\mathrm{opt}}}} = {\boldsymbol{q}}_{{\mathrm{tmp}}}^i $; $ {\gamma _{\min }} = \gamma _{{\mathrm{tmp}}}^i $;
       else if $\gamma _{{\mathrm{tmp}}}^i \lt {\gamma _{\min }}$ then
         $ {{\boldsymbol{q}}_{{\mathrm{opt}}}} = {\boldsymbol{q}}_{{\mathrm{tmp}}}^i $; $ {\gamma _{\min }} = \gamma _{{\mathrm{tmp}}}^i $;
     end if
     (6) 更新$ {\hat {\boldsymbol{p}}^{i + 1}} $元素為0或1的個數(shù)$ M $,$ i = i + 1 $;
     end while
     輸出:$ {N_{\rm f}} $幀載波初相和跳時碼的最優(yōu)組合$ {{\boldsymbol{q}}_{{\mathrm{opt}}}} $
    下載: 導出CSV

    表  1  仿真參數(shù)

    參數(shù)名稱 參數(shù)設置
    調制方式 BPSK
    信道類型 AWGN
    跳數(shù) 2, 4, 8
    每時幀的時隙數(shù) 4, 16, 32, 64
    每跳的符號數(shù) 1 000
    下載: 導出CSV

    表  2  不同跳時碼變化范圍的搜索次數(shù)

    跳時碼量化位數(shù)456
    候選組數(shù)60012002100
    迭代次數(shù)303851
    所提算法搜索次數(shù)(相位5 bit量化)18 00045 600107 100
    遍歷法搜索次數(shù)(相位3 bit量化)256264272
    遍歷法搜索次數(shù)(相位4 bit量化)264272280
    遍歷法搜索次數(shù)(相位5 bit量化)272280288
    下載: 導出CSV
  • [1] ZHOU Di, SHENG Min, LI Jiandong, et al. Aerospace integrated networks innovation for empowering 6G: A survey and future challenges[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 975–1019. doi: 10.1109/COMST.2023.3245614.
    [2] GERACI G, LóPEZ-PéREZ D, BENZAGHTA M, et al. Integrating terrestrial and non-terrestrial networks: 3D opportunities and challenges[J]. IEEE Communications Magazine, 2023, 61(4): 42–48. doi: 10.1109/MCOM.002.2200366.
    [3] QUY V K, CHEHRI A, QUY N M, et al. Innovative trends in the 6G Era: A comprehensive survey of architecture, applications, technologies, and challenges[J]. IEEE Access, 2023, 11: 39824–39844. doi: 10.1109/ACCESS.2023.3269297.
    [4] SCHOLTZ R. Multiple access with time-hopping impulse modulation[C]. IEEE Military Communications Conference, Boston, USA, 1993: 447–450. doi: 10.1109/MILCOM.1993.408628.
    [5] WELBORN M L. System considerations for ultra-wideband wireless networks[C]. 2001 IEEE Radio and Wireless Conference, Waltham, USA, 2001: 5–8. doi: 10.1109/RAWCON.2001.947480.
    [6] ALI T, SIDDIQUA P, and MATIN M A. Performance evaluation of different modulation schemes for ultra wide band systems[J]. Journal of Electrical Engineering, 2014, 65(3): 184–188. doi: 10.2478/jee-2014-0029.
    [7] YANG Liuqing and GIANNAKIS G B. Timing ultra-wideband signals with dirty templates[J]. IEEE Transactions on Communications, 2005, 53(11): 1952–1963. doi: 10.1109/TCOMM.2005.858663.
    [8] WU Tao, JI Zhiyong, and ZHAO Yubin. An adaptive UWB synchronization algorithm based on the IEEE 802.15. 4–2020 protocol[C]. 2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Danzhou, China, 2023: 647–653. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics60724.2023.00117.
    [9] NAVARRO M and NAJAR M. Frequency domain joint TOA and DOA estimation in IR-UWB[J]. IEEE Transactions on Wireless Communications, 2011, 10(10): 1–11. doi: 10.1109/TWC.2011.072511.090933.
    [10] DIACONESCU F. Blind detection of impulse radio UWB time-hopping pulses using the phase space transformation[C]. The 2019 11th International Conference on Electronics, Computers and Artificial Intelligence, Pitesti, Romania, 2019: 1–4. doi: 10.1109/ECAI46879.2019.9042136.
    [11] DIACONESCU F. Impulse radio UWB blind detection using cross recurrence plot[C]. Proceedings of the 2020 13th International Conference on Communications, Bucharest, Romania, 2020: 397–400. doi: 10.1109/COMM48946.2020.9141986.
    [12] BORIO D and ODRISCOLL C. Design of a general pseudolite pulsing scheme[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 2–16. doi: 10.1109/TAES.2013.110277.
    [13] LIU Tong, LIU Jian, WANG Jing, et al. Pseudolites to support location services in smart cities: Review and prospects[J]. Smart Cities, 2023, 6(4): 2081–2105. doi: 10.3390/smartcities6040096.
    [14] CHEONG J W. Signal processing and collective detection for locata positioning system[D]. [Ph. D. dissertation], University of New South Wales, 2012.
    [15] HU Yi, YU Baoguo, SONG Maozhong, et al. Pulse position detection of the pseudo random time-hopping pseudolite for the participative GNSS receivers[J]. IEEE Access, 2020, 8: 216151–216161. doi: 10.1109/ACCESS.2020.3040960.
    [16] LIU Xu, YAO Zheng, and LU Mingquan. Robust time-hopping pseudolite signal acquisition method based on dynamic Bayesian network[J]. GPS Solutions, 2021, 25(2): 38. doi: 10.1007/s10291-020-01066-y.
  • 加載中
圖(9) / 表(3)
計量
  • 文章訪問數(shù):  120
  • HTML全文瀏覽量:  51
  • PDF下載量:  29
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-31
  • 修回日期:  2024-12-17
  • 網(wǎng)絡出版日期:  2024-12-20

目錄

    /

    返回文章
    返回