一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

一種面向旋轉(zhuǎn)機械多傳感器故障診斷的模態(tài)融合深度聚類方法

伍章俊 許仁禮 方剛 邵海東

伍章俊, 許仁禮, 方剛, 邵海東. 一種面向旋轉(zhuǎn)機械多傳感器故障診斷的模態(tài)融合深度聚類方法[J]. 電子與信息學(xué)報, 2025, 47(1): 244-259. doi: 10.11999/JEIT240648
引用本文: 伍章俊, 許仁禮, 方剛, 邵海東. 一種面向旋轉(zhuǎn)機械多傳感器故障診斷的模態(tài)融合深度聚類方法[J]. 電子與信息學(xué)報, 2025, 47(1): 244-259. doi: 10.11999/JEIT240648
WU Zhangjun, XU Renli, FANG Gang, SHAO Haidong. A Modal Fusion Deep Clustering Method for Multi-sensor Fault Diagnosis of Rotating Machinery[J]. Journal of Electronics & Information Technology, 2025, 47(1): 244-259. doi: 10.11999/JEIT240648
Citation: WU Zhangjun, XU Renli, FANG Gang, SHAO Haidong. A Modal Fusion Deep Clustering Method for Multi-sensor Fault Diagnosis of Rotating Machinery[J]. Journal of Electronics & Information Technology, 2025, 47(1): 244-259. doi: 10.11999/JEIT240648

一種面向旋轉(zhuǎn)機械多傳感器故障診斷的模態(tài)融合深度聚類方法

doi: 10.11999/JEIT240648
基金項目: 國家自然科學(xué)基金(52275104),湖南省創(chuàng)新平臺與人才計劃(2023RC3097)
詳細(xì)信息
    作者簡介:

    伍章?。耗校┦?,副教授,碩士生導(dǎo)師,研究方向為機器學(xué)習(xí)與預(yù)防性維護

    許仁禮:男,碩士生,研究方向為故障診斷與無監(jiān)督學(xué)習(xí)

    方剛:男,碩士生,研究方向為圖神經(jīng)網(wǎng)絡(luò)與半監(jiān)督學(xué)習(xí)

    邵海東:男,博士,副教授,博士生導(dǎo)師,研究方向為故障診斷與智能運維、數(shù)據(jù)挖掘與信息融合

    通訊作者:

    邵海東 hdshao@hnu.edu.cn

  • 中圖分類號: TN911.7; TH133; TP183

A Modal Fusion Deep Clustering Method for Multi-sensor Fault Diagnosis of Rotating Machinery

Funds: The National Natural Science Foundation of China (52275104), Hunan Province Innovation Platform and Talent Plan Project (2023RC3097)
  • 摘要: 針對單傳感器和單模態(tài)信號特征信息不足的問題,該文提出一種基于多模態(tài)融合的端到端深度聚類旋轉(zhuǎn)機械多傳感器故障診斷方法(EDCM-MFF)。首先,利用門控遞歸單元自編碼模塊提取多傳感器故障信號的深度時序特征。然后,應(yīng)用短時傅里葉變換(STFT)將故障信號轉(zhuǎn)換為時頻圖像,并通過卷積自編碼器提取這些圖像的深度空間特征。接著,設(shè)計了一種模態(tài)融合注意力機制,通過計算不同模態(tài)深度特征之間的親和矩陣,實現(xiàn)模態(tài)特征的融合。最后,采用Kullback-Leibler(KL)散度聚類,以端到端方式實現(xiàn)故障類型的識別。實驗結(jié)果顯示,該方法在東南大學(xué)齒輪箱和軸承數(shù)據(jù)集上的識別準(zhǔn)確率分別為99.16%和98.63%。與現(xiàn)有的無監(jiān)督學(xué)習(xí)方法相比,所提方法能夠更有效地實現(xiàn)多傳感器和多模態(tài)的旋轉(zhuǎn)機械故障診斷。
  • 圖  1  EDCM-MFF方法框架圖

    圖  2  時序特征提取模塊結(jié)構(gòu)圖

    圖  3  空間特征提取模塊結(jié)構(gòu)圖

    圖  4  多模態(tài)特征融合模塊結(jié)構(gòu)圖

    圖  5  不同模態(tài)的ACC, NMI和ARI

    圖  6  MFF 中不同時間步的權(quán)重可視化結(jié)果

    圖  7  MFF中不同傳感器的權(quán)重可視化結(jié)果

    圖  8  基于不同深度特征維度的ACC, NMI和ARI

    圖  9  基于不同聚類損失權(quán)重系數(shù)的ACC, NMI和ARI

    圖  10  EDCM-MFF消融實驗的ACC, NMI和ARI

    圖  11  融合特征可視化結(jié)果

    1  EDCM-MFF的算法流程

     輸入:多傳感器信號數(shù)據(jù)$ {{\boldsymbol{X}}^{\rm S}} $;
        多傳感器時頻圖像數(shù)據(jù)$ {{\boldsymbol{X}}^{\rm{I}}} $;
        聚類質(zhì)心數(shù)目$K$;
        聚類損失的權(quán)重系數(shù)$\lambda $。
     預(yù)訓(xùn)練:
       根據(jù)式(10)和式(15)對特征提取模塊的GRU-AE和CAE進行
       預(yù)訓(xùn)練;
       根據(jù)式(16)–式(18)計算${{\boldsymbol{Z}}^{\mathrm{F}}}$;
       使用K-Means初始化聚類質(zhì)心$ {\boldsymbol{{\mu}} _j}(j = 1,2,\cdots,K) $。
     微調(diào):
      For iter = 1, 2, ···, MAXITER do
        根據(jù)式(16)–式(18)計算${{\boldsymbol{Z}}^{\mathrm{F}}}$;
        根據(jù)式(19)計算${{\boldsymbol{Q}}^{\mathrm{F}}}$;
        根據(jù)式(20)計算${{\boldsymbol{P}}^{\mathrm{F}}}$;
        根據(jù)式(23)更新整個網(wǎng)絡(luò)參數(shù)。
      End for
      For iter = 1, 2, ···, N do //N為樣本數(shù)
        根據(jù)式(22)計算第$i$個多傳感器數(shù)據(jù)樣本的聚類分配。
      End for
     輸出:聚類分配$ y \in {\mathbb{R}^N} $。
    下載: 導(dǎo)出CSV

    表  1  齒輪箱和軸承數(shù)據(jù)集

    數(shù)據(jù)集樣本數(shù)量狀態(tài)類型描述
    G_data1022×2健康、齒面磨損、根部裂紋、斷齒、缺損
    B_data1022×2健康、外圈故障、內(nèi)圈故障、
    復(fù)合故障、滾珠故障
    下載: 導(dǎo)出CSV

    表  2  實驗參數(shù)設(shè)置說明表

    方法 參數(shù)
    K-Means 迭代次數(shù):20;簇的數(shù)目:5
    AE+K-Means 編碼器網(wǎng)絡(luò)層數(shù):3;解碼器網(wǎng)絡(luò)層數(shù):3;深度特征維度:10
    DEC 編碼器網(wǎng)絡(luò)層數(shù):3;解碼器網(wǎng)絡(luò)層數(shù):3;深度特征維度:10
    IDEC 編碼器網(wǎng)絡(luò)層數(shù):3;解碼器網(wǎng)絡(luò)層數(shù):3;深度特征維度:10;聚類損失權(quán)重系數(shù)$\lambda $:0.1
    DCN 編碼器網(wǎng)絡(luò)層數(shù):3;解碼器網(wǎng)絡(luò)層數(shù):3;深度特征維度:10;聚類損失權(quán)重系數(shù)$\lambda $:0.1
    DSC-Nets 編碼器網(wǎng)絡(luò)層數(shù):3;解碼器網(wǎng)絡(luò)層數(shù):3;深度特征維度:10;聚類損失權(quán)重系數(shù)${\lambda _1}$:1.0;正則化損失權(quán)重系數(shù)${\lambda _2}$:0.01
    MvDSCN 編碼器網(wǎng)絡(luò)層數(shù):3;解碼器網(wǎng)絡(luò)層數(shù):3;深度特征維度:10;聚類損失權(quán)重系數(shù)${\lambda _1}$:0.01;lp范數(shù)正則化損失權(quán)重系數(shù)${\lambda _2}$:1.0;共同性正則化損失權(quán)重系數(shù)${\lambda _3}$:0.1;差異性正則化損失權(quán)重系數(shù)${\lambda _4}$:0.1
    AMVDSN 編碼器網(wǎng)絡(luò)層數(shù):3;解碼器網(wǎng)絡(luò)層數(shù):3;深度特征維度:10;聚類損失權(quán)重系數(shù)${\lambda _1}$:0.1;重構(gòu)損失權(quán)重系數(shù)${\lambda _2}$:0.1;正則化損失權(quán)重系數(shù)${\lambda _3}$:0.01
    EDCM-MFF 編碼器網(wǎng)絡(luò)層數(shù):3;解碼器網(wǎng)絡(luò)層數(shù):3;卷積核大小(2維):7×7, 5×5, 3×3;時間步數(shù)目:32;深度特征維度:{10, 20, 40, 80, 160};聚類損失權(quán)重系數(shù)$\lambda $:{0.01, 0.1, 1, 10, 100, 1000}
    下載: 導(dǎo)出CSV

    表  3  在G_data和B_data上的ACC, NMI和ARI(%)

    方法 G_data B_data
    ACC NMI ARI ACC NMI ARI
    K-Means 79.04 85.47 75.89 76.92 85.02 73.70
    AE+K-Means 95.42 88.87 90.15 96.33 90.82 91.70
    DEC 97.56 94.14 94.86 97.59 94.41 95.05
    IDEC 97.82 94.63 95.57 97.70 94.32 95.03
    DCN 97.86 94.81 95.26 97.89 94.87 95.62
    DSC-Nets 97.80 94.55 95.53 97.56 94.17 94.73
    MvDSCN 98.64 96.80 96.87 98.15 95.23 95.86
    AMVDSN 99.08 97.05 97.71 98.53 96.06 96.43
    EDCM-MFF 99.16 97.98 98.40 98.63 96.64 97.12
    下載: 導(dǎo)出CSV
  • [1] 王玉靜, 康守強, 張云, 等. 基于集合經(jīng)驗?zāi)B(tài)分解敏感固有模態(tài)函數(shù)選擇算法的滾動軸承狀態(tài)識別方法[J]. 電子與信息學(xué)報, 2014, 36(3): 595–600. doi: 10.3724/SP.J.1146.2013.00434.

    WANG Yujing, KANG Shouqiang, ZHANG Yun, et al. Condition recognition method of rolling bearing based on ensemble empirical mode decomposition sensitive intrinsic mode function selection algorithm[J]. Journal of Electronics & Information Technology, 2014, 36(3): 595–600. doi: 10.3724/SP.J.1146.2013.00434.
    [2] 文成林, 呂菲亞. 基于深度學(xué)習(xí)的故障診斷方法綜述[J]. 電子與信息學(xué)報, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715.

    WEN Chenglin and Lü Feiya. Review on deep learning based fault diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715.
    [3] 邵海東, 肖一鳴, 鄧乾旺, 等. 基于不確定性感知網(wǎng)絡(luò)的可信機械故障診斷[J]. 機械工程學(xué)報, 2024, 60(12): 194–206. doi: 10.3901/JME.2024.12.194.

    SHAO Haidong, XIAO Yiming, DENG Qianwang, et al. Trustworthy mechanical fault diagnosis using uncertainty-aware network[J]. Journal of Mechanical Engineering, 2024, 60(12): 194–206. doi: 10.3901/JME.2024.12.194.
    [4] 康守強, 楊佳軒, 王玉靜, 等. 基于改進寬度模型遷移學(xué)習(xí)的不同負(fù)載下滾動軸承狀態(tài)快速分類方法[J]. 電子與信息學(xué)報, 2023, 45(5): 1824–1832. doi: 10.11999/JEIT220401.

    KANG Shouqiang, YANG Jiaxuan, WANG Yujing, et al. A fast classification method of rolling bearing state under different loads based on improved broad model transfer learning[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1824–1832. doi: 10.11999/JEIT220401.
    [5] 邵海東, 顏深, 肖一鳴, 等. 時變轉(zhuǎn)速下基于改進圖注意力網(wǎng)絡(luò)的軸承半監(jiān)督故障診斷[J]. 電子與信息學(xué)報, 2023, 45(5): 1550–1558. doi: 10.11999/JEIT220303.

    SHAO Haidong, YAN Shen, XIAO Yiming, et al. Semi-supervised bearing fault diagnosis using improved graph attention network under time-varying speeds[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1550–1558. doi: 10.11999/JEIT220303.
    [6] 孫瑾鈴, 張偉濤, 樓順天. 基于等變化自適應(yīng)源分離算法的滾動軸承故障信號自適應(yīng)盲提取[J]. 電子與信息學(xué)報, 2020, 42(10): 2471–2477. doi: 10.11999/JEJT190722.

    SUN Jinling, ZHANG Weitao, and LOU Shuntian. Adaptive blind extraction of rolling bearing fault signal based on equivariant adaptive separation via independence[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2471–2477. doi: 10.11999/JEJT190722.
    [7] 邵海東, 林健, 閔志閃, 等. 分布外樣本干擾下基于改進半監(jiān)督原型網(wǎng)絡(luò)的齒輪箱跨域故障診斷[J]. 機械工程學(xué)報, 2024, 60(4): 212–221. doi: 10.3901/JME.2024.04.212.

    SHAO Haidong, LIN Jian, MIN Zhishan, et al. Improved semi-supervised prototype network for cross-domain fault diagnosis of gearbox under out-of-distribution interference samples[J]. Journal of Mechanical Engineering, 2024, 60(4): 212–221. doi: 10.3901/JME.2024.04.212.
    [8] XIAO Yiming, SHAO Haidong, HAN Songyu, et al. Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5254–5263. doi: 10.1109/TMECH.2022.3177174.
    [9] 解騫, 徐浩嵐, 王彤, 等. 基于自主認(rèn)知深度時間聚類表示的隔離開關(guān)故障診斷方法[J]. 電氣工程學(xué)報, 2024, 19(1): 281–289. doi: 10.11985/2024.01.030.

    XIE Qian, XU Haolan, WANG Tong, et al. Disconnector fault diagnosis method based on autonomous-cognition deep temporal clustering representation[J]. Journal of Electrical Engineering, 2024, 19(1): 281–289. doi: 10.11985/2024.01.030.
    [10] LI Xiang, LI Xu, and MA Hui. Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery[J]. Mechanical Systems and Signal Processing, 2020, 143: 106825. doi: 10.1016/j.ymssp.2020.106825.
    [11] LIU Yongjie, DING Kun, ZHANG Jingwei, et al. Fault diagnosis approach for photovoltaic array based on the stacked auto-encoder and clustering with I-V curves[J]. Energy Conversion and Management, 2021, 245: 114603. doi: 10.1016/j.enconman.2021.114603.
    [12] YU Jianbo and YAN Xuefeng. Multiscale intelligent fault detection system based on agglomerative hierarchical clustering using stacked denoising autoencoder with temporal information[J]. Applied Soft Computing, 2020, 95: 106525. doi: 10.1016/j.asoc.2020.106525.
    [13] ZHAO Bo, ZHANG Xianmin, WU Qiqiang, et al. A novel unsupervised directed hierarchical graph network with clustering representation for intelligent fault diagnosis of machines[J]. Mechanical Systems and Signal Processing, 2023, 183: 109615. doi: 10.1016/j.ymssp.2022.109615.
    [14] REN Yazhou, PU Jingyu, YANG Zhimeng, et al. Deep clustering: A comprehensive survey[EB/OL]. https://arxiv.org/abs/2210.04142, 2022.
    [15] IKOTUN A M, EZUGWU A E, ABUALIGAH L, et al. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data[J]. Information Sciences, 2023, 622: 178–210. doi: 10.1016/j.ins.2022.11.139.
    [16] XIE Junyuan, GIRSHICK R, and FARHADI A. Unsupervised deep embedding for clustering analysis[C]. The 33rd International Conference on Machine Learning, New York City, USA, 2016: 478–487.
    [17] GUO Xifeng, GAO Long, LIU Xingwang, et al. Improved deep embedded clustering with local structure preservation[C]. The Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 1753–1759. doi: 10.24963/ijcai.2017/243.
    [18] WU Zhangjun, FANG Gang, WANG Yifei, et al. An end-to-end deep clustering method with consistency and complementarity attention mechanism for multisensor fault diagnosis[J]. Applied Soft Computing, 2024, 158: 111594. doi: 10.1016/j.asoc.2024.111594.
    [19] WANG Kejun, WANG Wenqing, ZHAO Yabo, et al. Multisensor fault diagnosis via Markov chain and evidence theory[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106851. doi: 10.1016/j.engappai.2023.106851.
    [20] MAN Jie, DONG Honghui, JIA Limin, et al. AttGGCN model: A novel multi-sensor fault diagnosis method for high-speed train bogie[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 19511–19522. doi: 10.1109/TITS.2022.3156281.
    [21] TONG Jinyu, LIU Cang, ZHENG Jinde, et al. Multi-sensor information fusion and coordinate attention-based fault diagnosis method and its interpretability research[J]. Engineering Applications of Artificial Intelligence, 2023, 124: 106614. doi: 10.1016/j.engappai.2023.106614.
    [22] CUI Jian, XIE Ping, WANG Xiao, et al. M2FN: An end-to-end multi-task and multi-sensor fusion network for intelligent fault diagnosis[J]. Measurement, 2022, 204: 112085. doi: 10.1016/j.measurement.2022.112085.
    [23] XU Yadong, FENG Ke, YAN Xiaoan, et al. CFCNN: A novel convolutional fusion framework for collaborative fault identification of rotating machinery[J]. Information Fusion, 2023, 95: 1–16. doi: 10.1016/j.inffus.2023.02.012.
    [24] YANG Chaoying, LIU Jie, ZHOU Kaibo, et al. Semisupervised machine fault diagnosis fusing unsupervised graph contrastive learning[J]. IEEE Transactions on Industrial Informatics, 2023, 19(8): 8644–8653. doi: 10.1109/TII.2022.3220847.
    [25] WANG Daichao, LI Yibin, JIA Lei, et al. Novel three-stage feature fusion method of multimodal data for bearing fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3514710. doi: 10.1109/TIM.2021.3071232.
    [26] MA Meng, SUN Chuang, and CHEN Xuefeng. Deep coupling autoencoder for fault diagnosis with multimodal sensory data[J]. IEEE Transactions on Industrial Informatics, 2018, 14(3): 1137–1145. doi: 10.1109/TII.2018.2793246.
    [27] CHE Changchang, WANG Huawei, NI Xiaomei, et al. Hybrid multimodal fusion with deep learning for rolling bearing fault diagnosis[J]. Measurement, 2021, 173: 108655. doi: 10.1016/j.measurement.2020.108655.
    [28] HU Zhanxuan, WANG Yichen, NING Hailong, et al. Mutual-taught deep clustering[J]. Knowledge-Based Systems, 2023, 282: 111100. doi: 10.1016/j.knosys.2023.111100.
  • 加載中
圖(11) / 表(4)
計量
  • 文章訪問數(shù):  334
  • HTML全文瀏覽量:  85
  • PDF下載量:  62
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-25
  • 修回日期:  2024-12-02
  • 網(wǎng)絡(luò)出版日期:  2024-12-06
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回