一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

雙RIS輔助的MISO系統(tǒng)吞吐量最大化研究

謝文武 張沁可 梁錫濤 劉晨宇 余超 王驥

謝文武, 張沁可, 梁錫濤, 劉晨宇, 余超, 王驥. 雙RIS輔助的MISO系統(tǒng)吞吐量最大化研究[J]. 電子與信息學報. doi: 10.11999/JEIT240612
引用本文: 謝文武, 張沁可, 梁錫濤, 劉晨宇, 余超, 王驥. 雙RIS輔助的MISO系統(tǒng)吞吐量最大化研究[J]. 電子與信息學報. doi: 10.11999/JEIT240612
XIE Wenwu, ZHANG Qinke, LIANG Xitao, LIU Chenyu, YU Chao, WANG Ji. Throughput Maximization for Double RIS-Assisted MISO Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240612
Citation: XIE Wenwu, ZHANG Qinke, LIANG Xitao, LIU Chenyu, YU Chao, WANG Ji. Throughput Maximization for Double RIS-Assisted MISO Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240612

雙RIS輔助的MISO系統(tǒng)吞吐量最大化研究

doi: 10.11999/JEIT240612
基金項目: 國家自然科學基金 (62472169),湖南省自然科學基金(2023JJ50045, 2024JJ7218, 2024JJ7219),湖南省教育廳項目(22B0676, 23C0217),湖南省大學生創(chuàng)新創(chuàng)業(yè)項目(S202410543061)
詳細信息
    作者簡介:

    謝文武:男,副教授,研究方向為5G&6G基帶算法、NFC等

    張沁可:女,碩士生,研究方向為RIS、凸優(yōu)化

    梁錫濤:男,碩士生,研究方向為5G/6G無線通信

    劉晨宇:男,碩士生,研究方向為RIS、凸優(yōu)化

    余超:男,講師,研究方向為NOMA、凸優(yōu)化

    王驥:男,副教授,研究方向為5G/6G無線通信

    通訊作者:

    余超 12012017@hnist.edu.cn

  • 中圖分類號: TN911

Throughput Maximization for Double RIS-Assisted MISO Systems

Funds: The National Natural Science Foundation of China (62472169), Hunan Provincial Natural Science Foundation (2023JJ50045, 2024JJ7218, 2024JJ7219), The Project of Education Bureau of Hunan Province (22B0676, 23C0217), Hunan Provincial College Students Innovation and Entrepreneurship-Project (S202410543061)
  • 摘要: 近年來,有源可重構智能表面(ARIS)技術獲得了學術界的廣泛關注。然而,ARIS在多RIS輔助無線通信系統(tǒng)中的應用還缺乏相關研究。針對此問題,該文提出基于雙RIS輔助的無線通信系統(tǒng)模型。模型假設基站(BS)和用戶之間的直連鏈路受阻,僅通過RIS形成的反射鏈路進行通信。在此基礎上,根據(jù)ARIS與被動RIS(PRIS)的不同組合情況,提出4種RIS組合模型。模型的目標是優(yōu)化基站波束賦形、RIS的相移矩陣和功率分配因子,以最大化系統(tǒng)通信容量。由于該優(yōu)化問題為非凸問題,該文采用了交替優(yōu)化算法(AO)與連續(xù)凸逼近(SCA)對問題進行處理。仿真結果表明,無論基站發(fā)射功率高或低,TAAR組合模型的性能均顯著優(yōu)于傳統(tǒng)單ARIS配置。
  • 圖  1  雙RIS輔助單用戶場景下無線通信系統(tǒng)模型

    圖  2  不同組合模型下不同放大功率$a_{\max }^2$的系統(tǒng)容量

    圖  3  不同發(fā)射功率$P$的系統(tǒng)容量

    1  基于AO算法的信道對齊流程

     (1) 初始化參數(shù)${{\theta}} _1^{(0)}$, ${{\theta}} _2^{(0)}$, ${{\mathbf{\omega }}^{(0)}}$迭代數(shù)$n = 0$,收斂門限$\varepsilon $
     (2) 利用初始參數(shù)計算$ \gamma _{{\text{TPPR}}}^n $的值
     (3) 迭代開始:
     (4)  固定${{\theta} _2}$, ${\mathbf{\omega }}$,求解式(15)得到${{\theta} _1}$
     (5)  固定${{\theta} _1}$, ${\mathbf{\omega }}$,求解式(16)得到${{\theta} _2}$
     (6)  固定${{\theta} _1}$,${{\theta} _2}$,求解式(17)得到${\mathbf{\omega }}$
     (7)  使用${{\theta} _1}$,${{\theta} _2}$, ${\mathbf{\omega }}$,計算$\gamma _{{\text{TPPR}}}^{n + 1}$的值
     (8)   判斷$\left| {\gamma _{{\text{TPPR}}}^{n + 1} - \gamma _{{\text{TPPR}}}^n} \right| \le \varepsilon $或$n \ge 100$是否成立,若不滿
         足條件,$n = n + 1$返回步驟4
     (9) 結束循環(huán)
     (10) 得到最優(yōu)解${{\theta} _1}$, ${{\theta} _2}$, ${\mathbf{\omega }}$
    下載: 導出CSV

    2  基于SCA的AO算法流程

     (1) 初始化參數(shù)${\theta} _1^{(0)}$, ${\theta} _2^{(0)}$, ${{\mathbf{\omega }}^{(0)}}$, ${\tau _0}$, ${\kappa _0}$,迭代數(shù)$n = 0$,收斂
     門限$\varepsilon $
     (2) 計算$\gamma _{{\text{TAPR}}}^n$的值
     (3) 迭代開始:
     (4)  固定${{\theta} _2}$, ${\mathbf{\omega }}$,求解問題(P2.1),將解進行高斯隨機化后得到
        ${\theta} _1^{n + 1}$
     (5)  固定${{\theta} _1}$, ${\mathbf{\omega }}$,求解問題(P2.2),將解進行高斯隨機化后得到
        ${\theta} _2^{n + 1}$
     (6)  固定${{\theta} _1}$, ${{\theta} _2}$,求解問題(P2.3)得到${{\mathbf{\omega }}^{n + 1}}$
     (7)   使用${\theta} _1^{n + 1}$, ${\theta} _2^{n + 1}$,${{\mathbf{\omega }}^{n + 1}}$,計算$\gamma _{{\text{TAPR}}}^{n + 1}$的值
     (8)    判斷收斂條件$\left| {\gamma _{{\text{TAPR}}}^{n + 1} - \gamma _{{\text{TAPR}}}^n} \right| \le \varepsilon $或$n \ge 100$是否成
          立,若滿足條件,迭代結束,否則,$n = n + 1$返回步
          驟4
     (9) 得到最優(yōu)解${{\theta} _1}$, ${{\theta} _2}$, ${\mathbf{\omega }}$
    下載: 導出CSV
  • [1] SIDDIQI M Z and MIR T. Reconfigurable intelligent surface-aided wireless communications: An overview[J]. Intelligent and Converged Networks, 2022, 3(1): 33–63. doi: 10.23919/ICN.2022.0007.
    [2] 張力康, 杜清河, 盧忱, 等. 面向6G的RIS輔助通信系統(tǒng)的信道估計技術[J]. 移動通信, 2024, 48(6): 75–80. doi: 10.3969/j.issn.1006-1010.20240425-0002.

    ZHANG Likang, DU Qinghe, LU Chen, et al. Overview of channel estimation for reconfigurable intelligent surface-assisted communications towards 6G system[J]. Mobile Communications, 2024, 48(6): 75–80. doi: 10.3969/j.issn.1006-1010.20240425-0002.
    [3] JIANG Hao, ZHANG Zaichen, XIONG Baiping, et al. A 3D stochastic channel model for 6G wireless double-IRS cooperatively assisted MIMO communications[C]. 2021 13th International Conference on Wireless Communications and Signal Processing, Changsha, China, 2021. doi: 10.1109/WCSP52459.2021.9613605.
    [4] GORTY V K. Channel estimation for double IRS assisted broadband single-user SISO communication[C]. 2022 IEEE International Conference on Signal Processing and Communications, Bangalore, India, 2022: 1–5. doi: 10.1109/SPCOM55316.2022.9840513.
    [5] ZHENG Beixiong, YOU Changsheng, and ZHANG Rui. Efficient channel estimation for double-IRS aided multi-user MIMO system[J]. IEEE Transactions on Communications, 2021, 69(6): 3818–3832. doi: 10.1109/TCOMM.2021.3064947.
    [6] BAZZI S and XU Wen. IRS parameter optimization for channel estimation MSE minimization in double-IRS aided systems[J]. IEEE Wireless Communications Letters, 2022, 11(10): 2170–2174. doi: 10.1109/LWC.2022.3196126.
    [7] YOU Changsheng, ZHENG Beixiong, and ZHANG Rui. Wireless communication via double IRS: Channel estimation and passive beamforming designs[J]. IEEE Wireless Communications Letters, 2021, 10(2): 431–435. doi: 10.1109/LWC.2020.3034388.
    [8] HAN Yitao, ZHANG Shuowen, DUAN Lingjie, et al. Cooperative double-IRS aided communication: Beamforming design and power scaling[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1206–1210. doi: 10.1109/LWC.2020.2986290.
    [9] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [10] HAN Yitao, ZHANG Shuowen, DUAN Lingjie, et al. Double-IRS aided MIMO communication under LoS channels: Capacity maximization and scaling[J]. IEEE Transactions on Communications, 2022, 70(4): 2820–2837. doi: 10.1109/TCOMM.2022.3151893.
    [11] ZHENG Beixiong, YOU Changsheng, and ZHANG Rui. Double-IRS assisted multi-user MIMO: Cooperative passive beamforming design[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4513–4526. doi: 10.1109/TWC.2021.3059945.
    [12] DING Gengfa, YANG Feng, DING Lianghui, et al. Analysis and optimization of a double-IRS cooperatively assisted system with a quasi-static phase shift design[J]. IEEE Transactions on Wireless Communications, 2023, 22(7): 4416–4433. doi: 10.1109/TWC.2022.3225474.
    [13] KUMAR C and KASHYAP S. On the power transfer efficiency and feasibility of wireless energy transfer using double IRS[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6165–6180. doi: 10.1109/TVT.2022.3231636.
    [14] FU Min and ZHANG Rui. Active and passive IRS jointly aided communication: Deployment design and achievable rate[J]. IEEE Wireless Communications Letters, 2023, 12(2): 302–306. doi: 10.1109/LWC.2022.3224457.
    [15] LI Xinhao, YOU Changsheng, KANG Zhenyu, et al. Double-active-IRS aided wireless communication with total amplification power constraint[J]. IEEE Communications Letters, 2023, 27(10): 2817–2821. doi: 10.1109/LCOMM.2023.3298070.
    [16] KANG Zhenyu, YOU Changsheng, and ZHANG Rui. Double-active-IRS aided wireless communication: Deployment optimization and capacity scaling[J]. IEEE Wireless Communications Letters, 2023, 12(11): 1821–1825. doi: 10.1109/LWC.2023.3294258.
    [17] NGUYEN T A, NGUYEN H V, DO D T, et al. Performance analysis of downlink double-IRS systems relying on non-orthogonal multiple access[J]. IEEE Access, 2023, 11: 110208–110220. doi: 10.1109/ACCESS.2023.3322373.
    [18] HU Xiaoling, ZHONG Caijun, ZHANG Yu, et al. Location information aided multiple intelligent reflecting surface systems[J]. IEEE Transactions on Communications, 2020, 68(12): 7948–7962. doi: 10.1109/TCOMM.2020.3020577.
    [19] TEJAS K S, UDAYKUMAR M, VARUN R, et al. Intelligent reflecting surface assisted wireless communication for coverage enhancement[C]. 2023 International Conference on Smart Systems for applications in Electrical Sciences, Tumakuru, India, 2023. doi: 10.1109/ICSSES58299.2023.10200009.
    [20] 王丹, 陳小夢, 王勇芳. 可重構智能表面輔助無線通信的用戶分配[J]. 電子與信息學報, 2022, 44(7): 2425–2430. doi: 10.11999/JEIT211473.

    WANG Dan, CHEN Xiaomeng, and WANG Yongfang. User assignment for wireless communication assisted by reconfigurable intelligent surfaces[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2425–2430. doi: 10.11999/JEIT211473.
    [21] 王華華, 孫宸, 朱鵬云. 可重構智能表面輔助雙功能雷達通信系統(tǒng)的聯(lián)合波束優(yōu)化[J]. 電子與信息學報, 2024, 46(1): 222–228. doi: 10.11999/JEIT221537.

    WANG Huahua, SUN Chen, and ZHU Pengyun. Joint beamforming optimization for RIS-assisted dual-functional radar-communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(1): 222–228. doi: 10.11999/JEIT221537.
  • 加載中
圖(3) / 表(2)
計量
  • 文章訪問數(shù):  127
  • HTML全文瀏覽量:  52
  • PDF下載量:  22
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-07-17
  • 修回日期:  2024-11-15
  • 網(wǎng)絡出版日期:  2024-11-29

目錄

    /

    返回文章
    返回