一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于低秩正則聯(lián)合稀疏建模的圖像去噪算法

查志遠 袁鑫 張嘉超 朱策

查志遠, 袁鑫, 張嘉超, 朱策. 基于低秩正則聯(lián)合稀疏建模的圖像去噪算法[J]. 電子與信息學(xué)報. doi: 10.11999/JEIT240324
引用本文: 查志遠, 袁鑫, 張嘉超, 朱策. 基于低秩正則聯(lián)合稀疏建模的圖像去噪算法[J]. 電子與信息學(xué)報. doi: 10.11999/JEIT240324
ZHA Zhiyuan, YUAN Xin, ZHANG Jiachao, ZHU Ce. Low-Rank Regularized Joint Sparsity Modeling for Image Denoising[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240324
Citation: ZHA Zhiyuan, YUAN Xin, ZHANG Jiachao, ZHU Ce. Low-Rank Regularized Joint Sparsity Modeling for Image Denoising[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240324

基于低秩正則聯(lián)合稀疏建模的圖像去噪算法

doi: 10.11999/JEIT240324
基金項目: 國家自然科學(xué)基金(62471199, 62020106011, 62271414, 61971476, 62002160和62072238),吉林大學(xué)唐敖慶英才教授啟動基金,浙江省杰出青年基金(LR23F010001)和西湖基金會(2023GD007)
詳細信息
    作者簡介:

    查志遠:男,教授,研究方向為圖像復(fù)原、計算成像、機器學(xué)習(xí)

    袁鑫:男,研究員,研究方向為計算成像

    張嘉超:女,助理教授,研究方向為圖像復(fù)原

    朱策:男,教授,研究方向為視頻編碼

    通訊作者:

    查志遠 zhiyuan_zha@jlu.edu.cn

  • 中圖分類號: TN911.73

Low-Rank Regularized Joint Sparsity Modeling for Image Denoising

Funds: The National Natural Science Foundation of China (62471199, 62020106011, 62271414, 61971476, 62002160 and 62072238), Start-up Grant from the Tang Aoqing talent professor of Jilin University, Science Fund for Distinguished Young Scholars of Zhejiang Province (LR23F010001), and Westlake Foundation (2023GD007)
  • 摘要: 非局部稀疏表示模型,如聯(lián)合稀疏(JS)模型、低秩(LR)模型和組稀疏表示(GSR)模型,通過有效利用圖像的非局部自相似(NSS)屬性,在圖像去噪研究中展現(xiàn)出巨大的潛力。流行的基于字典的JS算法在其目標函數(shù)中利用松馳的凸懲罰,避免了NP-hard稀疏編碼,但只能得到近似的稀疏表示。這種近似的JS模型未能對潛在的圖像數(shù)據(jù)施加低秩性,從而導(dǎo)致圖像去噪質(zhì)量降低。該文提出一種新穎的低秩正則聯(lián)合稀疏(LRJS)模型,用于求解圖像去噪問題。提出的LRJS模型同時利用非局部相似塊的LR和JS先驗信息,可以增強非局部相似塊之間的相關(guān)性(即低秩性),從而可以更好地抑制噪聲,提升去噪圖像的質(zhì)量。為了提高優(yōu)化過程的可處理性和魯棒性,該文設(shè)計了一種具有自適應(yīng)參數(shù)調(diào)整策略的交替最小化算法來求解目標函數(shù)。在兩個圖像去噪問題(包括高斯噪聲去除和泊松去噪)上的實驗結(jié)果表明,提出的LRJS方法在客觀度量和視覺感知上均優(yōu)于許多現(xiàn)有的流行或先進的圖像去噪算法,特別是在處理具有高度自相似性的圖像數(shù)據(jù)時表現(xiàn)更為出色。提出的LRJS圖像去噪算法的源代碼通過以下鏈接下載:https://pan.baidu.com/s/14bt6u94NBTZXxhWjBHxn6A?pwd=1234,提取碼:1234。
  • 圖  1  稀疏系數(shù)對比示意圖

    圖  2  比較提出的LRJS方法和幾種先進的方法的圖像去噪結(jié)果

    圖  3  實驗中的一些測試圖像

    圖  4  圖像House在噪聲標準差為100時,不同方法的去噪視覺比對結(jié)果

    圖  5  圖像Urban25在噪聲標準差為50時,不同方法的去噪視覺比對結(jié)果

    圖  6  圖像Barbara伴隨著像素強度峰值$ P = 5 $的泊松噪聲的不同方法的去噪視覺比對結(jié)果

    圖  7  真實圖像去噪場景1

    圖  8  真實圖像去噪場景2

    表  1  基于LRJS的高斯噪聲去除算法

     輸入:噪聲圖像$ y $。
     初始化:$ {\sigma _n} $, $ {\hat x^0} = y $, $ {y^0} = y $。
     For $ k = 1 $ do
     迭代正則調(diào)整: $ {y^k} = {\hat x^{(k - 1)}} + \gamma (y - {\hat x^{(k - 1)}}) $。
     更新噪聲標準差$ {\sigma _e} $通過式(26)。
      For 噪聲圖像$ y $中每個塊$ {y_i} $ do
       收集相似塊生成一個組$ {{\boldsymbol{Y}}_i} $。
       使用PCA從組$ {{\boldsymbol{Y}}_i} $中學(xué)習(xí)一個字典$ {{\boldsymbol{D}}_i} $。
       獲得組稀疏$ {{\boldsymbol{A}}_i} $通過計算$ {{\boldsymbol{A}}_i} = {\boldsymbol{D}}_i^{\mathrm{T}}{Y_i} $。
       對組稀疏$ {{\boldsymbol{A}}_i} $執(zhí)行SVD:$ [{{\boldsymbol{U}}_i},{\varDelta _i},{{\boldsymbol{V}}_i}] = {\text{SVD}}({{\boldsymbol{A}}_i}) $。
       更新參數(shù)$ \mu $通過計算式(25)。
       更新參數(shù)$ \tau $通過計算式(28)。
       估計LR矩陣$ {\hat {\boldsymbol{L}}_i} $通過計算式(9)。
       更新參數(shù)$ \eta $通過計算式(25)。
       更新參數(shù)$ \lambda $通過計算式(28)。
       估計組稀疏系數(shù)$ {\hat {\boldsymbol{A}}_i} $通過計算式(5)。
      End for
       估計噪聲圖像$ \hat x $通過計算式(13)。
      End for
     輸出:最終的去噪圖像$ \hat x $。
    下載: 導(dǎo)出CSV

    表  2  基于LRJS的泊松噪聲去除算法

     輸入:噪聲圖像$ y $。
     初始化:估計$ {\sigma _n} $通過計算式(27),$ {\hat x^0} = y $,$ {y^0} = y $。
     For $ k = 1 $ do
     迭代正則調(diào)整: $ {y^k} = {\hat x^{(k - 1)}} + \gamma (y - {\hat x^{(k - 1)}}) $。
     更新噪聲標準差$ {\sigma _e} $通過式(26)。
      For 噪聲圖像$ y $中每個塊$ {y_i} $ do
       收集相似塊生成一個組$ {{\boldsymbol{Y}}_i} $。
       使用PCA從組$ {{\boldsymbol{Y}}_i} $中學(xué)習(xí)一個字典$ {{\boldsymbol{D}}_i} $。
       獲得組稀疏$ {{\boldsymbol{A}}_i} $通過計算$ {{\boldsymbol{A}}_i} = {\boldsymbol{D}}_i^{\mathrm{T}}{Y_i} $。
       對組稀疏$ {{\boldsymbol{A}}_i} $執(zhí)行SVD:$ [{{\boldsymbol{U}}_i},{\varDelta _i},{{\boldsymbol{V}}_i}] = {\text{SVD}}({{\boldsymbol{A}}_i}) $。
       更新參數(shù)$ \mu $通過計算式(25)。
       更新參數(shù)$ \tau $通過計算式(28)。
       估計LR矩陣$ {\hat {\boldsymbol{L}}_i} $通過計算式(9)。
       更新參數(shù)$ \eta $通過計算式(25)。
       更新參數(shù)$ \lambda $通過計算式(28)。
       估計組稀疏系數(shù)$ {\hat {\boldsymbol{A}}_i} $通過計算式(5)。
      End for
      調(diào)用ADMM算法:
      初始化:$ g = 0 $,$ z = {\hat x^{(k)}} $。
      更新$ \hat z $通過計算式(21)。
      更新$ \hat x $通過計算式(24)。
      更新$ \hat g $通過計算式(20)。
      End for
     輸出:最終的去噪圖像$ \hat x $。
    下載: 導(dǎo)出CSV

    表  3  不同方法用于高斯噪聲去除的平均PSNR比較結(jié)果(dB)

    $ {\sigma _n} $BM3DLSSCEPLLNCSRGIDPGPDaGMMOGLRNLNCDRLRJS
    2031.2031.3630.7231.2630.2531.3031.0431.0530.4431.56
    4027.5327.7727.1627.6626.6527.7927.3727.6927.0428.02
    7524.6624.5624.0124.4723.2024.7124.1724.4124.0224.90
    10023.3023.0922.6623.0021.5623.3622.8122.6922.7223.62
    下載: 導(dǎo)出CSV

    表  4  不同方法測試Urban100數(shù)據(jù)集用于高斯噪聲去除的平均PSNR比較結(jié)果(dB)

    $ {\sigma _n} $BM3DNCSRPGPDOGLRDn-CNNIRCNNFFDNetLRJS
    1033.3933.6633.4032.9433.8333.6533.4234.25
    2029.5029.6829.4729.2729.7529.6429.6130.16
    3027.3327.3927.1927.1827.4427.4027.4927.85
    4025.4425.7725.7025.6725.8625.9026.0326.28
    5024.5524.5924.5924.5124.7724.7524.9325.07
    平均28.0428.2228.0727.9128.3328.2728.3028.72
    下載: 導(dǎo)出CSV

    表  5  不同方法用于泊松噪聲去除的平均PSNR比較結(jié)果(dB)

    $ P $TNRDDn-CNNIRCNNLRPDLRSLRJS
    519.5022.3122.7821.6622.2323.56
    1023.5823.2224.6723.6324.6125.44
    1524.1125.4725.8124.2925.9326.54
    2024.4025.9526.5425.3926.8327.44
    下載: 導(dǎo)出CSV

    表  6  消融學(xué)習(xí):JS和提出的LRJS模型在Set12數(shù)據(jù)集上用于圖像去噪的平均PSNR結(jié)果(dB)

    高斯噪聲去除泊松噪聲去除
    $ {\sigma _n} $102030405075100平均$ P $151015202530平均
    JS34.3031.0229.0627.7826.7424.9623.6828.22JS19.3723.6525.1026.2927.0127.5827.9325.28
    LRJS34.5431.1429.2127.8726.8024.9823.7328.32LRJS20.0723.8625.4026.4127.1427.6928.0925.52
    下載: 導(dǎo)出CSV
  • [1] OSHER S, BURGER M, GOLDFARB D, et al. An iterative regularization method for total variation-based image restoration[J]. Multiscale Modeling & Simulation, 2005, 4(2): 460–489. doi: 10.1137/040605412.
    [2] AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199.
    [3] BUADES A, COLL B, and MOREL J M. A non-local algorithm for image denoising[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 60–65. doi: 10.1109/CVPR.2005.38.
    [4] ELAD M, KAWAR B, and VAKSMAN G. Image denoising: The deep learning revolution and beyond—a survey paper[J]. SIAM Journal on Imaging Sciences, 2023, 16(3): 1594–1654. doi: 10.1137/23M1545859.
    [5] 趙冬冬, 葉逸飛, 陳朋, 等. 基于殘差和注意力網(wǎng)絡(luò)的聲吶圖像去噪方法[J]. 光電工程, 2023, 50(6): 230017. doi: 10.12086/oee.2023.230017.

    ZHAO Dongdong, YE Yifei, CHEN Peng, et al. Sonar image denoising method based on residual and attention network[J]. Opto-Electronic Engineering, 2023, 50(6): 230017. doi: 10.12086/oee.2023.230017.
    [6] 周建新, 周鳳祺. 基于改進協(xié)同量子粒子群的小波去噪分析研究[J]. 電光與控制, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637x.2022.01.010.

    ZHOU Jianxin and ZHOU Fengqi. Wavelet denoising analysis based on cooperative quantum-behaved particle swarm optimization[J]. Electronics Optics & Control, 2022, 29(1): 47–50. doi: 10.3969/j.issn.1671-637x.2022.01.010.
    [7] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238.
    [8] 羅亮, 馮象初, 張選德, 等. 基于非局部雙邊隨機投影低秩逼近圖像去噪算法[J]. 電子與信息學(xué)報, 2013, 35(1): 99–105. doi: 10.3724/SP.J.1146.2012.00819.

    LUO Liang, FENG Xiangchu, ZHANG Xuande, et al. An image denoising method based on non-local two-side random projection and low rank approximation[J]. Journal of Electronics & Information Technology, 2013, 35(1): 99–105. doi: 10.3724/SP.J.1146.2012.00819.
    [9] ZHANG Jian, ZHAO Debin, and GAO Wen. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3336–3351. doi: 10.1109/TIP.2014.2323127.
    [10] XU Jun, ZHANG Lei, ZUO Wangmeng, et al. Patch group based nonlocal self-similarity prior learning for image denoising[C]. IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 244–252. doi: 10.1109/ICCV.2015.36.
    [11] ZHA Zhiyuan, YUAN Xin, WEN Bihan, et al. A benchmark for sparse coding: When group sparsity meets rank minimization[J]. IEEE Transactions on Image Processing, 2020, 29: 5094–5109. doi: 10.1109/TIP.2020.2972109.
    [12] MAIRAL J, BACH F, PONCE J, et al. Non-local sparse models for image restoration[C]. 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 2272–2279. doi: 10.1109/ICCV.2009.5459452.
    [13] ZHANG Chengfang, ZHANG Ziyou, FENG Ziliang, et al. Joint sparse model with coupled dictionary for medical image fusion[J]. Biomedical Signal Processing and Control, 2023, 79: 104030. doi: 10.1016/j.bspc.2022.104030.
    [14] LI Chunzhi and CHEN Xiaohua. A staged approach with structural sparsity for hyperspectral unmixing[J]. IEEE Sensors Journal, 2023, 23(12): 13248–13260. doi: 10.1109/JSEN.2023.3270885.
    [15] ZHA Zhiyuan, WEN Bihan, YUAN Xin, et al. Low-rank regularized joint sparsity for image denoising[C]. IEEE International Conference on Image Processing, Anchorage, USA, 2021: 1644–1648. doi: 10.1109/ICIP42928.2021.9506726.
    [16] ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206.
    [17] ZHANG Kai, ZUO Wangmeng, GU Shuhang, et al. Learning deep CNN denoiser prior for image restoration[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2808–2817. doi: 10.1109/CVPR.2017.300.
    [18] ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi: 10.1109/TIP.2018.2839891.
    [19] CHEN Yunjin and PORK T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1256–1272. doi: 10.1109/TPAMI.2016.2596743.
    [20] ZHAO Mingchao, WEN Youwei, NG M, et al. A nonlocal low rank model for Poisson noise removal[J]. Inverse Problems and Imaging, 2021, 15(3): 519–537. doi: 10.3934/ipi.2021003.
    [21] ELAD M and YAVNEH I. A plurality of sparse representations is better than the sparsest one alone[J]. IEEE Transactions on Information Theory, 2009, 55(10): 4701–4714. doi: 10.1109/TIT.2009.2027565.
    [22] DONG Weisheng, ZHANG Lei, SHI Guangming, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2013, 22(4): 1620–1630. doi: 10.1109/TIP.2012.2235847.
    [23] CHEN Yong, HE Wei, YOKOYA N, et al. Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3556–3570. doi: 10.1109/TCYB.2019.2936042.
    [24] CAI Jianfeng, CANDèS E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982. doi: 10.1137/080738970.
    [25] KUMAR G P and SAHAY R R. Low rank Poisson denoising (LRPD): A low rank approach using split Bregman algorithm for Poisson noise removal from images[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 1907–1916. doi: 10.1109/CVPRW.2019.00242.
    [26] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends? in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016.
    [27] WEN Youwei and CHAN R H. Parameter selection for total-variation-based image restoration using discrepancy principle[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1770–1781. doi: 10.1109/TIP.2011.2181401.
    [28] ZORAN D and WEISS Y. From learning models of natural image patches to whole image restoration[C]. IEEE International Conference on Computer Vision, Barcelona, Spain, 2011: 479–486. doi: 10.1109/ICCV.2011.6126278.
    [29] TALEBI H and MILANFAR P. Global image denoising[J]. IEEE Transactions on Image Processing, 2014, 23(2): 755–768. doi: 10.1109/TIP.2013.2293425.
    [30] LUO Enming, CHAN S H, and NGUYEN T Q. Adaptive image denoising by mixture adaptation[J]. IEEE Transactions on Image Processing, 2016, 25(10): 4489–4503. doi: 10.1109/TIP.2016.2590318.
    [31] PANG Jiahao and CHEUNG G. Graph Laplacian regularization for image denoising: Analysis in the continuous domain[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1770–1785. doi: 10.1109/TIP.2017.2651400.
    [32] LIU Haosen and TAN Shan. Image regularizations based on the sparsity of corner points[J]. IEEE Transactions on Image Processing, 2019, 28(1): 72–87. doi: 10.1109/TIP.2018.2862357.
    [33] HUANG Jiabin, SINGH A, and AHUJA N. Single image super-resolution from transformed self-exemplars[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5197–5206. doi: 10.1109/CVPR.2015.7299156.
    [34] AZZARI L and FOI A. Variance stabilization for noisy+estimate combination in iterative Poisson denoising[J]. IEEE Signal Processing Letters, 2016, 23(8): 1086–1090. doi: 10.1109/LSP.2016.2580600.
    [35] LEHTINEN J, MUNKBERG J, HASSELGREN J, et al. Noise2Noise: Learning image restoration without clean data[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 2965–2974.
    [36] MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695–4708. doi: 10.1109/TIP.2012.2214050.
  • 加載中
圖(8) / 表(6)
計量
  • 文章訪問數(shù):  219
  • HTML全文瀏覽量:  67
  • PDF下載量:  34
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-04-23
  • 修回日期:  2025-01-24
  • 網(wǎng)絡(luò)出版日期:  2025-02-09

目錄

    /

    返回文章
    返回