物理不可克隆函數-多位并行異或運算一體化設計技術
doi: 10.11999/JEIT240300
-
1.
南京郵電大學集成電路科學與工程學院 南京 210003
-
2.
溫州大學電氣與電子工程學院 溫州 325035
Integrated Design Techniques of Physical Unclonable Function and Multi-bit Parallel Exclusive OR Operations
-
1.
College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
-
2.
College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
-
摘要: 物理不可克隆函數(PUF)和異或(XOR)運算在信息安全領域均發(fā)揮著重要作用。為突破PUF與邏輯運算之間的功能壁壘,通過對PUF工作機理和差分串聯電壓開關邏輯(DCVSL)的研究,該文提出一種基于DCVSL異或門級聯單元隨機工藝偏差的PUF和多位并行異或運算電路一體化設計方案。通過在DCVSL異或門差分輸出端增加預充電管并在對地端設置管控門,可實現PUF特征信息提取、異或/同或(XOR/XNOR)運算和功率控制3種工作模式自由切換。此外,針對PUF響應穩(wěn)定性問題,提出極端工作點和黃金工作點共同參與標記的不穩(wěn)定位混合篩選技術。基于TSMC 65 nm工藝,對輸入位寬為10位的電路進行全定制版圖設計,面積為38.76 μm2。實驗結果表明,PUF模式下,可產生1 024位輸出響應,混合篩選后可獲得超過512位穩(wěn)定的密鑰,且具有良好的隨機性和唯一性;運算模式下,可同時實現10位并行異或和同或運算,功耗和延時分別為2.67 μW和593.52 ps。功控模式下,待機功耗僅70.5 nW。所提方法為突破PUF“功能墻”提供了一種新的設計思路。
-
關鍵詞:
- 物理不可克隆函數 /
- 邏輯運算 /
- 一體化設計 /
- 穩(wěn)定性篩選 /
- 硬件安全
Abstract: Physical Unclonable Functions (PUFs), as well as Exclusive OR (XOR) operations, play an important role in the field of information security. In order to break through the functional barrier between PUF and logic operation, an integrated design scheme of PUF and multi-bit parallel XOR operation circuit based on the random process deviation of Differential Cascode Voltage Switch Logic (DCVSL) XOR gate cascade unit is proposed by studying the working mechanism of PUF and DCVSL. By adding a pre-charge tube at the differential output of the DCVSL XOR gate and setting a control gate at the ground end, three operating modes of the PUF feature information extraction, XOR/ Negated Exclusive OR (XNOR) operation and power control can be switched freely. Meanwhile, for the PUF response stability problem, the unstable bit hybrid screening technique with extreme and golden operating point participation labeling was proposed. Based on TSMC process of 65 nm, a fully customized layout design for a 10-bit input bit-wide circuit with an area of 38.76 μm2 was carried out. The experimental results show that the1024 -bit output response can be generated in PUF mode, and a stable key of more than 512 bit can be obtained after hybrid screening, which has good randomness and uniqueness; In the operation mode, 10-bit parallel XOR and XNOR operations can be achieved simultaneously, with power consumption and delay of 2.67 μW and 593.52 ps, respectively. In power control mode, the standby power consumption is only 70.5 nW. The proposed method provides a novel way to break the function-wall of PUF. -
1 標記實際不穩(wěn)定位
standard_response = PUF_at (SV, ST), unstable_bits = 0 for each voltage∈ [LV, ···, SV, ···, HV] do for each temperature ∈ [LT, ···, ST, ···, HT] do if measured_response[i] != standard_response[i] unstable_bits[i] = 1 end if end for end for 下載: 導出CSV
2 篩選不穩(wěn)定位
Filter_bits=1; for each (voltage, temperature)∈ [(SV,ST), (LV,LT),
(LV,HT), (HV,LT), (HV,HT)] dofor i from 1 to 2n do if left_response[i] != right_response [i] filter[i] = 1; end if end for end for for i from 1 to 2n do if filter[i] ==0 and unstable_bits==1 Filter_bits++ break end if end for 下載: 導出CSV
表 1 與相關文獻性能對比
VLSI’20[16] TCASI’22[17] JSSC’22[13] ISCAS’23[18] 本文 工藝尺寸(nm) 65 65 28 65 65 比特特征尺寸(F2) 215 – 1125 – 8.95 電壓范圍(V) 1.0~1.4 0.5~1.0 0.75~1.05 0.7~1.5 1.0~1.4 溫度范圍(°C) –40~125 –10~80 –25~100 0~120 –40~85 原始誤碼率(%) 2.12* 3.00 3.78 5.025* 3.82 隨機性(%) 49.30 50.11 – 50.59 49.87 唯一性 0.500 0 0.494 7 0.5030 0.499 8 0.502 8 邏輯運算 無 無 無 無 有 功率控制 無 無 無 無 有 不穩(wěn)定位篩選 無 無 無 無 有 *最大誤碼率 下載: 導出CSV
-
[1] GAO Yansong, AL-SARAWI S F, and ABBOTT D. Physical unclonable functions[J]. Nature Electronics, 2020, 3(2): 81–91. doi: 10.1038/s41928-020-0372-5. [2] ZHANG Jiliang, SHEN Chaoqun, GUO Zhiyang, et al. CT PUF: Configurable Tristate PUF against machine learning attacks for IoT security[J]. IEEE Internet of Things Journal, 2022, 9(16): 14452–14462. doi: 10.1109/JIOT.2021.3090475. [3] ZHOU Ziyu, WANG Pengjun, and LI Gang. Bagua protocol: A whole-process configurable protocol for IoT sensing devices security based on strong PUF[J]. IEEE Internet of Things Journal, 2024, 11(1): 805–819. doi: 10.1109/JIOT.2023.3285930. [4] 郭昕婕, 王光燿, 王紹迪. 存內計算芯片研究進展及應用[J]. 電子與信息學報, 2023, 45(5): 1888–1898. doi: 10.11999/JEIT220420.GUO Xinjie, WANG Guangyao, and WANG Shaodi. Technology developments and applications of in-memory computing processors[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1888–1898. doi: 10.11999/JEIT220420. [5] HONG Qinghui, MAN Shen, SUN Jingru, et al. Programmable in-memory computing circuit for solving combinatorial matrix operation in one step[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(7): 2916–2928. doi: 10.1109/TCSI.2023.3263217. [6] GUAJARDO J, KUMAR S S, SCHRIJEN G J, et al. FPGA Intrinsic PUFs and their use for IP protection[C]. 9th International Workshop on Cryptographic Hardware and Embedded Systems - CHES 2007, Vienna, Austria, 2007: 63–80. doi: 10.1007/978-3-540-74735-2_5. [7] KASSEM M, MANSOUR M, CHEHAB A, et al. A sub-threshold SRAM based PUF[C]. 2010 International Conference on Energy Aware Computing, Cairo, Egypt, 2010: 1–4. doi: 10.1109/ICEAC.2010.5702285. [8] ZHENG Yu, HASHEMIAN M S, and BHUNIA S. RESP: A robust physical unclonable function retrofitted into embedded SRAM array[C]. 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, USA, 2013: 1–9. doi: 10.1145/2463209.2488807. [9] SUTAR S, RAHA A, and RAGHUNATHAN V. D-PUF: An intrinsically reconfigurable DRAM PUF for device authentication in embedded systems[C]. 2016 International Conference on Compliers, Architectures, and Sythesis of Embedded Systems (CASES), Pittsburgh, USA, 2016: 1–10. doi: 10.1145/2968455.2968519. [10] ZHAO Xiaojin, ZHAO Qiang, LIU Yongpan, et al. An ultracompact switching-voltage-based fully reconfigurable RRAM PUF with low native instability[J]. IEEE Transactions on Electron Devices, 2020, 67(7): 3010–3013. doi: 10.1109/TED.2020.2996181. [11] VATAJELU E I, DI NATALE G, and PRINETTO P. Security primitives (PUF and TRNG) with STT-MRAM[C]. 2016 IEEE 34th VLSI Test Symposium (VTS), Las Vegas, USA, 2016: 1–4. doi: 10.1109/VTS.2016.7477292. [12] SATPATHY S K, MATHEW S K, KUMAR R, et al. An all-digital unified physically unclonable function and true random number generator featuring self-calibrating hierarchical von Neumann extraction in 14-nm tri-gate CMOS[J]. IEEE Journal of Solid-State Circuits, 2019, 54(4): 1074–1085. doi: 10.1109/JSSC.2018.2886350. [13] TANEJA S, RAJANNA V K, and ALIOTO M. In-memory unified TRNG and multi-bit PUF for ubiquitous hardware security[J]. IEEE Journal of Solid-State Circuits, 2022, 57(1): 153–166. doi: 10.1109/JSSC.2021.3125255. [14] BATURONE I, ROMáN R, and CORBACHO á. A unified multibit PUF and TRNG based on ring oscillators for secure IoT devices[J]. IEEE Internet of Things Journal, 2023, 10(7): 6182–6192. doi: 10.1109/JIOT.2022.3224298. [15] PRATIHAR K, CHATTERJEE U, ALAM M, et al. Birds of the same feather flock together: A dual-mode circuit candidate for strong PUF-TRNG functionalities[J]. IEEE Transactions on Computers, 2023, 72(6): 1636–1651. doi: 10.1109/TC.2022.3218986. [16] LI Gang, WANG Pengjun, MA Xuejiao, et al. A 215-F2 bistable physically unclonable function with an ACF of <0.005 and a native bit instability of 2.05% in 65-nm CMOS process[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(11): 2290–2299. doi: 10.1109/TVLSI.2020.3014892. [17] LU Lu, YOO T, and KIM T T H. A 6T SRAM based two-dimensional configurable challenge-response PUF for portable devices[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(6): 2542–2552. doi: 10.1109/TCSI.2022.3156983. [18] PENG Qiaozhou, ZUO Haibiao, HAO Jiacheng, et al. A subthreshold-inverter-based strong PUF with high reliability and energy efficiency[C]. 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, USA, 2023: 1–5. doi: 10.1109/ISCAS46773.2023.10181580. -