一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

5G毫米波反向陣極簡構架與CMOS芯片實現(xiàn)

郭嘉誠 胡三明 沈一竹 錢昀 胡楚悠 黃永明 尤肖虎

郭嘉誠, 胡三明, 沈一竹, 錢昀, 胡楚悠, 黃永明, 尤肖虎. 5G毫米波反向陣極簡構架與CMOS芯片實現(xiàn)[J]. 電子與信息學報, 2024, 46(5): 1570-1581. doi: 10.11999/JEIT240143
引用本文: 郭嘉誠, 胡三明, 沈一竹, 錢昀, 胡楚悠, 黃永明, 尤肖虎. 5G毫米波反向陣極簡構架與CMOS芯片實現(xiàn)[J]. 電子與信息學報, 2024, 46(5): 1570-1581. doi: 10.11999/JEIT240143
GUO Jiacheng, HU Sanming, SHEN Yizhu, QIAN Yun, HU Chuyou, HUANG Yongming, YOU Xiaohu. Simplified Architecture of 5G Millimeter-wave Retrodirective Array and Its Implementation in CMOS Chips[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1570-1581. doi: 10.11999/JEIT240143
Citation: GUO Jiacheng, HU Sanming, SHEN Yizhu, QIAN Yun, HU Chuyou, HUANG Yongming, YOU Xiaohu. Simplified Architecture of 5G Millimeter-wave Retrodirective Array and Its Implementation in CMOS Chips[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1570-1581. doi: 10.11999/JEIT240143

5G毫米波反向陣極簡構架與CMOS芯片實現(xiàn)

doi: 10.11999/JEIT240143
基金項目: 國家重點研發(fā)計劃(2019YFB2204701),國家自然科學基金(61831006,62250610223)
詳細信息
    作者簡介:

    郭嘉誠:男,博士,研究方向為射頻、毫米波集成電路設計

    胡三明:男,教授,博士生導師,研究方向為射頻、毫米波集成電路設計

    沈一竹:女,教授,博士生導師,研究方向為毫米波電路及天線

    錢昀:女,博士生,研究方向為射頻、毫米波集成電路設計

    胡楚悠:女,碩士,研究方向為射頻、毫米波集成電路設計

    黃永明:男,教授,博士生導師,研究方向為下一代移動通信技術

    尤肖虎:男,教授,中國科學院院士,研究方向為未來移動通信理論與技術、智能信號處理與通信

    通訊作者:

    尤肖虎 xhyu@seu.edu.cn

  • 中圖分類號: TN43

Simplified Architecture of 5G Millimeter-wave Retrodirective Array and Its Implementation in CMOS Chips

Funds: The National Key Research and Development Program of China (2019YFB2204701), The National Natural Science Foundation of China (61831006, 62250610223)
  • 摘要: 該文首次報道了一種極簡構架的5G毫米波反向陣設計原理及其CMOS芯片實現(xiàn)技術。該毫米波反向陣極簡構架,利用次諧波混頻器提供相位共軛和陣列反向功能,無需移相電路及波束控制系統(tǒng),便可實現(xiàn)波束自動回溯移動通信功能。該文采用國產(chǎn)0.18 μm CMOS工藝研制了5G毫米波反向陣芯片,包括發(fā)射前端、接收前端及跟蹤鎖相環(huán)等核心模塊,其中發(fā)射及接收前端芯片采用次諧波混頻及跨導增強等技術,分別實現(xiàn)了19.5 dB和18.7 dB的實測轉(zhuǎn)換增益。所實現(xiàn)的跟蹤鎖相環(huán)芯片具備雙模工作優(yōu)勢,可根據(jù)不同參考信號支持幅度調(diào)制及相位調(diào)制,實測輸出信號相噪優(yōu)于–125 dBc/Hz@100 kHz。該文給出的測試結果驗證了所提5G毫米波反向陣通信架構及其CMOS芯片實現(xiàn)的可行性,從而為5G/6G毫米波通信探索了一種架構極簡、成本極低、拓展性強的新方案。
  • 圖  1  反向陣基本架構

    圖  2  本文所提5G毫米波反向陣架構

    圖  3  接收前端原理圖

    圖  4  帶有補償電感的等效電路

    圖  5  本振網(wǎng)絡輸出的瞬時仿真波形

    圖  6  發(fā)射前端原理圖

    圖  7  5G毫米波反向陣跟蹤鎖相環(huán)結構框圖

    圖  8  跟蹤鎖相環(huán)中的整形電路

    圖  9  5G毫米波頻段接收前端芯片顯微照片

    圖  10  下變頻次諧波混頻器增益測試結果

    圖  11  接收前端增益測試結果

    圖  12  5G毫米波頻段發(fā)射前端芯片顯微照片

    圖  13  上變頻混頻器增益測試結果

    圖  14  發(fā)射前端增益測試結果

    圖  15  5G毫米波頻段跟蹤相環(huán)芯片顯微照片

    圖  16  跟蹤鎖相環(huán)芯片測試

    圖  17  跟蹤鎖相環(huán)芯片測試結果

    圖  18  跟蹤鎖相環(huán)芯片通信性能測試設置

    圖  19  AM調(diào)制模式下的測試波形

    圖  20  QPSK調(diào)制模式下測得的星座圖

    表  1  下變頻次諧波混頻器性能對比總結

    文獻[27] 文獻[28] 文獻[29] 本文
    工藝 0.13 μm CMOS GaInP/GaAs 0.18 μm CMOS 0.18 μm CMOS
    頻率(GHz) 8.65 10.00 21.00~40.00 22.00~29.00
    增益(dB) 6.0 10.0 –8.2 7.0
    輸入P1dB(dBm) –18.0 –12.0 –4.0 –11.4
    功耗(mW) 0.6 20.0 74.6 30.6
    下載: 導出CSV

    表  2  低噪聲放大器性能對比總結

    文獻[30]文獻[31]文獻[32]本文
    工藝0.18 μm CMOS0.18 μm CMOS0.13 μm CMOS0.18 μm CMOS
    中心頻率(GHz)22.025.724.025.0
    增益(dB)15.08.912.112.1
    噪聲系數(shù)(dB)6.006.9310.407.30
    功耗(mW)16.030.012.034.2
    下載: 導出CSV

    表  3  上變頻次諧波混頻器性能對比總結

    文獻[33] 文獻[34] 文獻[35] 本文
    工藝 65 nm CMOS 0.15 μm CMOS 65 nm CMOS 0.18 μm CMOS
    頻率(GHz) 27.0~44.0 24.0~44.0 19.5~31.5 23.5~29.5
    增益(dB) –10.5 10.5 –5.1 6.0
    輸出P1dB(dBm) –9.0 –11.5 –15.4 –11.8
    功耗(mW) 0 225.0 55.6 23.4
    下載: 導出CSV

    表  4  功率放大器性能對比總結

    文獻[36]文獻[37]本文
    工藝0.18 μm CMOS0.18 μm CMOS0.18 μm CMOS
    中心頻率(GHz)242425
    增益(dB)7.011.014.5
    輸出P1(dB)11.010.04.5
    功耗(mW)10042118
    下載: 導出CSV

    表  5  反向陣構架對比總結

    文獻[38] 文獻[39] 文獻[10] 文獻[19] 文獻[22] 本文
    芯片集成 × × ×
    工作頻段(GHz) 6.0 5.8 1.5 2.4 2.4 5G毫米波(26.0 GHz頻段)
    調(diào)制方式及速率 BPSK 78.125 kB/s AM 10 MB/s 16QAM 151.2 kB/s × AM 100 kB/s AM 100 kB/s
    QPSK 1 MB/s
    下載: 導出CSV
  • [1] YU Yiming, CHEN Zhilin, ZHAO Chenxi, et al. A 39 GHz dual-channel transceiver chipset with an advanced LTCC package for 5G multi-beam MIMO systems[J]. Engineering, 2023, 22: 125–140. doi: 10.1016/j.eng.2022.04.023.
    [2] BOCCARDI F, HEATH R W, LOZANO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52(2): 74–80. doi: 10.1109/MCOM.2014.6736746.
    [3] RAPPAPORT T S, SUN Shu, MAYZUS R, et al. Millimeter wave mobile communications for 5G cellular: It will work![J]. IEEE Access, 2013, 1: 335–349. doi: 10.1109/ACCESS.2013.2260813.
    [4] RAPPAPORT T S, XING Yunchou, KANHERE O, et al. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond[J]. IEEE Access, 2019, 7: 78729–78757. doi: 10.1109/ACCESS.2019.2921522.
    [5] YI Yongran, ZHAO Dixian, ZHANG Jiajun, et al. A 24–29.5-GHz highly linear phased-array transceiver front-end in 65-nm CMOS supporting 800-MHz 64-QAM and 400-MHz 256-QAM for 5G new radio[J]. IEEE Journal of Solid-State Circuits, 2022, 57(9): 2702–2718. doi: 10.1109/JSSC.2022.3169588.
    [6] WANG Yun, WU Rui, PANG Jian, et al. A 39-GHz 64-element phased-array transceiver with built-in phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2020, 55(5): 1249–1269. doi: 10.1109/JSSC.2020.2980509.
    [7] SKOLNIK M and KING D. Self-phasing array antennas[J]. IEEE Transactions on Antennas and Propagation, 1964, 12(2): 142–149. doi: 10.1109/TAP.1964.1138179.
    [8] FUSCO V and BUCHANAN N. Developments in retrodirective array technology[J]. IET Microwaves, Antennas & Propagation, 2013, 7(2): 131–140. doi: 10.1049/iet-map.2012.0565.
    [9] FUSCO V F and KARODE S L. Self-phasing antenna array techniques for mobile communications applications[J]. Electronics & Communication Engineering Journal, 1999, 11(6): 279–286. doi: 10.1049/ecej:19990608.
    [10] BUCHANAN N B, FUSCO V F, and VAN DER VORST M. SATCOM retrodirective array[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(5): 1614–1621. doi: 10.1109/TMTT.2016.2541121.
    [11] BRENNAN P V. An experimental and theoretical study of self-phased arrays in mobile satellite communications[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(11): 1370–1376. doi: 10.1109/8.43556.
    [12] DING Yuan, BUCHANAN N B, FUSCO V F, et al. Analog/digital hybrid delay-locked-loop for K/Ka band satellite retrodirective arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3323–3331. doi: 10.1109/TMTT.2018.2829714.
    [13] REN Y J and CHANG Kai. New 5. 8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(7): 2970–2976. doi: 10.1109/TMTT.2006.877422.
    [14] GUO Jiacheng, WANG Jun, and HU Sanming. Circularly polarized retrodirective array for far-field wireless power transfer[C]. 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 2019: 429–431. doi: 10.1109/APMC46564.2019.9038263.
    [15] CHAN P and FUSCO V. Bi-static 5.8 GHz RFID range enhancement using retrodirective techniques[C]. 2011 41st European Microwave Conference, Manchester, UK, 2011: 976–979. doi: 10.23919/EuMC.2011.6101753.
    [16] DARDARI D, LOTTI M, DECARLI N, et al. Establishing multi-user MIMO communications automatically using retrodirective arrays[J]. IEEE Open Journal of the Communications Society, 2023, 4: 1396–1416. doi: 10.1109/OJCOMS.2023.3289326.
    [17] ETTORRE M, ALOMAR W A, and GRBIC A. 2-D Van Atta array of wideband, wideangle slots for radiative wireless power transfer systems[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(9): 4577–4585. doi: 10.1109/TAP.2018.2851197.
    [18] LI Ying and JANDHYALA V. Design of retrodirective antenna arrays for short-range wireless power transmission[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(1): 206–211. doi: 10.1109/TAP.2011.2167897.
    [19] GUO Jiacheng, SHEN Yizhu, YE Kai, et al. Differential retrodirective array with integrated circuits in low-cost 0.18 μm CMOS for automatic tracking[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1587–1590. doi: 10.1109/TAP.2021.3111206.
    [20] VAN ATTA L G. Electromagnetic reflector[P]. U. S. , 2908002, 1959.
    [21] PON C. Retrodirective array using the heterodyne technique[J]. IEEE Transactions on Antennas and Propagation, 1964, 12(2): 176–180. doi: 10.1109/TAP.1964.1138191.
    [22] GUO Jiacheng, SHEN Yizhu, DONG Guoqing, et al. A retrodirective array enabled by CMOS chips for two-way wireless communication with automatic beam tracking[J]. Engineering, 2024. doi: 10.1016/j.eng.2023.12.010.
    [23] CHEN W K. Theory and design of broadband matching networks: Applied electricity and electronics[M]. Oxford: Pergamon, 2013.
    [24] CAULTON M, HERSHENOV B, KNIGHT S P, et al. Status of lumped elements in microwave integrated circuits-present and future[J]. IEEE Transactions on Microwave Theory and Techniques, 1971, 19(7): 588–599. doi: 10.1109/TMTT.1971.1127586.
    [25] QIAN Yun, SHEN Yizhu, and HU Sanming. Millimeter-wave CMOS low-noise amplifier with high gain and compact footprint[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(6): 699–702. doi: 10.1109/LMWT.2023.3246166.
    [26] 胡楚悠. 硅基毫米波功率放大器芯片設計[D]. [碩士論文]. 東南大學, 2022. doi: 10.27014/d.cnki.gdnau.2022.003381.

    HU Chuyou. Design of silicon-based millimeter-wave power amplifier chip[D]. [Master dissertation], Southeast University, 2022. doi: 10.27014/d.cnki.gdnau.2022.003381.
    [27] HE Shan and SAAVEDRA C E. An ultra-low-voltage and low-power ×2 subharmonic downconverter mixer[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(2): 311–317. doi: 10.1109/TMTT.2011.2178259.
    [28] WU T H and MENG C. 10-GHz highly symmetrical sub-harmonic Gilbert mixer using GaInP/GaAs HBT technology[J]. IEEE Microwave and Wireless Components Letters, 2007, 17(5): 370–372. doi: 10.1109/LMWC.2007.895717.
    [29] HUNG S H, LEE Y C, SU Chunchi, et al. High-isolation millimeter-wave subharmonic monolithic mixer with modified quasi-circulator[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(3): 1140–1149. doi: 10.1109/TMTT.2013.2244229.
    [30] GUAN Xiang and HAJIMIRI A. A 24-GHz CMOS front-end[J]. IEEE Journal of Solid-State Circuits, 2004, 39(2): 368–373. doi: 10.1109/JSSC.2003.821783.
    [31] YU K W, LU Y L, CHANG D C, et al. K-band low-noise amplifiers using 0.18 μm CMOS technology[J]. IEEE Microwave and Wireless Components Letters, 2004, 14(3): 106–108. doi: 10.1109/LMWC.2004.825175.
    [32] HSIEH K A, WU H S, TSAI K H, et al. A dual-band 10/24-GHz amplifier design incorporating dual-frequency complex load matching[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(6): 1649–1657. doi: 10.1109/TMTT.2012.2191303.
    [33] TSAI J H, HSIEH Y Y, and LIU W H. A 27–44 GHz CMOS dual-ring subharmonic up-conversion mixer with linearization technique[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(4): 347–350. doi: 10.1109/LMWC.2021.3124587.
    [34] SU Chunchi, LIU C H, LIN C M, et al. A 24–44 GHz broadband subharmonic mixer with novel isolation-enhanced circuit[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(2): 124–126. doi: 10.1109/LMWC.2014.2382688.
    [35] LEE H S, MYEONG J, and MIN B W. A 26GHz CMOS 3× subharmonic mixer with a fundamental frequency rejection technique[J]. IEEE Access, 2020, 8: 122986–122996. doi: 10.1109/ACCESS.2020.3007316.
    [36] KOMIJANI A, NATARAJAN A, and HAJIMIRI A. A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18μm CMOS[J]. IEEE Journal of Solid-State Circuits, 2005, 40(9): 1901–1908. doi: 10.1109/JSSC.2005.848143.
    [37] MOSALAM H, ALLAM A, ABDEL-RAHMAN A, et al. A high-efficiency good linearity 21 to 26.5 GHz fully integrated power amplifier using 0.18 μm CMOS technology[C]. 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, 2016: 1–4. doi: 10.1109/MWSCAS.2016.7870065.
    [38] DIDOMENICO L D and REBEIZ G M. Digital communications using self-phased arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(4): 677–684. doi: 10.1109/22.915442.
    [39] LEONG K M K H, WANG Yuanxun, and ITOH T. A full duplex capable retrodirective array system for high-speed beam tracking and pointing applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(5): 1479–1489. doi: 10.1109/TMTT.2004.827025.
  • 加載中
圖(20) / 表(5)
計量
  • 文章訪問數(shù):  413
  • HTML全文瀏覽量:  341
  • PDF下載量:  60
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-04-29
  • 網(wǎng)絡出版日期:  2024-05-12
  • 刊出日期:  2024-05-30

目錄

    /

    返回文章
    返回