一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

小樣本SAR目標(biāo)的雙重一致性因果識別方法

王陳煒 羅思懿 黃鈺林 裴季方 張寅 楊建宇

王陳煒, 羅思懿, 黃鈺林, 裴季方, 張寅, 楊建宇. 小樣本SAR目標(biāo)的雙重一致性因果識別方法[J]. 電子與信息學(xué)報, 2024, 46(10): 3928-3935. doi: 10.11999/JEIT240140
引用本文: 王陳煒, 羅思懿, 黃鈺林, 裴季方, 張寅, 楊建宇. 小樣本SAR目標(biāo)的雙重一致性因果識別方法[J]. 電子與信息學(xué)報, 2024, 46(10): 3928-3935. doi: 10.11999/JEIT240140
WANG Chenwei, LUO Siyi, HUANG Yulin, PEI Jifang, ZHANG Yin, YANG Jianyu. A Causal Interventional SAR ATR Method with Limited Data via Dual Consistency[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3928-3935. doi: 10.11999/JEIT240140
Citation: WANG Chenwei, LUO Siyi, HUANG Yulin, PEI Jifang, ZHANG Yin, YANG Jianyu. A Causal Interventional SAR ATR Method with Limited Data via Dual Consistency[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3928-3935. doi: 10.11999/JEIT240140

小樣本SAR目標(biāo)的雙重一致性因果識別方法

doi: 10.11999/JEIT240140
基金項目: 四川省自然科學(xué)基金 (2023NSFSC1970)
詳細信息
    作者簡介:

    王陳煒:男,博士,研究方向為雷達目標(biāo)識別、機器學(xué)習(xí)、雷達探測成像等

    羅思懿:女,碩士,研究方向為雷達目標(biāo)識別、機器學(xué)習(xí)、雷達探測成像等

    黃鈺林:男,教授,研究方向為雷達探測成像、雷達目標(biāo)檢測與識別、人工智能與機器學(xué)習(xí)等

    裴季方:男,副研究員,研究方向為雷達目標(biāo)識別、機器學(xué)習(xí)、雷達探測成像等

    張寅:男,研究員,研究方向為新體制雷達、雷達信號處理、雷達成像等

    楊建宇:男,教授,研究方向為雷達探測與成像、信號檢測與估計等

    通訊作者:

    黃鈺林 yulinhuang@uestc.edu.cn

  • 中圖分類號: TN958

A Causal Interventional SAR ATR Method with Limited Data via Dual Consistency

Funds: The Natural Science Foundation of Sichuan Province (2023NSFSC1970)
  • 摘要: 在小樣本條件下提升方法的泛化性能,是合成孔徑雷達自動目標(biāo)識別(SAR ATR)的重要研究方向。針對該方向中的基礎(chǔ)理論問題,該文建立了一個SAR ATR因果模型,證明了SAR圖像中背景、相干斑等干擾在充足樣本條件下可以被忽略;但在小樣本條件下,這些因素將成為識別中的混雜因子,在提取的SAR圖像特征中引入虛假相關(guān)性,影響SAR ATR性能。為了甄別和消除這些特征中的虛假效應(yīng),該文提出一個基于雙重一致性的小樣本SAR ATR方法,其中雙重一致性包括類內(nèi)一致性掩碼和效應(yīng)一致性損失。首先,基于鑒別特征應(yīng)具有類內(nèi)一致和類間差異的原則,利用類內(nèi)一致性掩碼,捕獲目標(biāo)的類內(nèi)一致鑒別特征,甄別出目標(biāo)特征中的混淆部分,準(zhǔn)確估計出干擾引入的虛假效應(yīng)。其次,基于不變風(fēng)險最小化的思想,利用效應(yīng)一致性損失,將經(jīng)驗風(fēng)險最小化數(shù)據(jù)量需求轉(zhuǎn)變?yōu)閷π?yīng)相似度的度量需求,降低虛假效應(yīng)消除對數(shù)據(jù)量的需求,消除特征中的虛假效應(yīng)。因而,所提基于雙重一致性的小樣本SAR ATR方法可實現(xiàn)特征提取中的真實因果,實現(xiàn)準(zhǔn)確的識別性能。兩個基準(zhǔn)數(shù)據(jù)集上的識別實驗,驗證了該方法的合理性和有效性,可提升小樣本條件下SAR目標(biāo)識別的性能。
  • 圖  1  有限SAR樣本在ATR中引入的因果效應(yīng)變化

    圖  2  本文方法的總體框架

    表  1  MSTAR數(shù)據(jù)集下的訓(xùn)練集與測試集

    類別 訓(xùn)練集 測試集
    數(shù)量 俯仰角 數(shù)量 俯仰角
    BMP2-9563 233 17° 195 15°
    BRDM2-E71 298 274
    BTR60-7532 256 195
    BTR70-c71 233 196
    D7-92 299 274
    2S1-b01 299 274
    T62-A51 299 273
    T72-132 232 196
    ZIL131-E12 299 274
    ZSU234-d08 299 274
    下載: 導(dǎo)出CSV

    表  2  MSTAR數(shù)據(jù)集不同訓(xùn)練樣本數(shù)量下10類目標(biāo)的識別性能(%)

    類別每類目標(biāo)訓(xùn)練樣本數(shù)
    510202530406080100
    BMP273.3383.5992.3194.8795.9097.9598.9797.4498.46
    BRDM277.7494.8993.8096.7297.0898.1899.2799.6498.91
    BTR6083.5986.6791.7994.3694.8795.9098.9796.9297.44
    BTR7070.9290.8292.3595.9296.9498.4797.9698.9898.98
    D768.9883.5892.7095.2695.9997.4598.5499.6499.64
    2S181.7580.2993.8095.9997.0898.5498.9199.6498.91
    T6274.3690.1192.6795.6097.0798.5397.4499.6399.63
    T7289.8086.2291.8495.4196.9498.4798.9898.9898.98
    ZIL13168.2585.7793.0796.7297.8198.5498.9199.6499.64
    ZSU23474.4580.2993.8096.7297.0898.1898.5499.6499.64
    平均值76.1386.3893.0096.0797.0198.2498.7999.3299.35
    下載: 導(dǎo)出CSV

    表  3  OpenSARShip數(shù)據(jù)集中訓(xùn)練與測試集

    類別 成像條件 訓(xùn)練樣本數(shù) 測試樣本數(shù) 總樣本數(shù)
    Bulk Carrier VH 和 VV, C 波段
    分辨率=5~20 m
    入射角=20°~45°
    仰角=±11°
    Rg20 m×az22 m
    200 475 675
    Container Ship 200 811 1011
    Tanker 200 354 554
    下載: 導(dǎo)出CSV

    表  4  OpenSARShip數(shù)據(jù)集不同訓(xùn)練樣本數(shù)量下3類艦船目標(biāo)的識別性能(%)

    類別 每類訓(xùn)練樣本數(shù)
    10 20 30 40 50 60 70 80 100 200
    Bulk Carrier 65.89 63.58 65.68 75.16 60.21 66.11 68.21 65.26 72.84 73.47
    Container Ship 71.27 75.46 75.96 76.57 82.49 79.04 80.02 85.20 83.35 90.75
    Tanker 79.10 82.77 81.92 74.01 84.46 86.16 84.46 81.92 78.81 82.77
    平均值 71.51 73.75 74.41 75.66 76.58 76.92 77.66 78.86 79.41 84.12
    下載: 導(dǎo)出CSV

    表  5  消融實驗:20個訓(xùn)練樣本下不同消融配置的識別性能(%)

    方法
    配置
    特征效應(yīng)BMP2BRDM2BTR60BTR70D72S1T62T72ZIL131ZSU234平均值
    V1××80.5175.9174.8780.1073.7276.2878.7582.1484.3186.8679.59
    V2×88.2189.0581.5488.2785.7796.3581.6884.1887.2394.1688.16
    V392.3193.8091.7992.3592.7093.8092.6791.8493.0793.8093.00
    下載: 導(dǎo)出CSV

    表  6  MSTAR數(shù)據(jù)集下SAR目標(biāo)識別性能對比(%)

    方法 每類樣本數(shù)
    10 20 40 55 80 110 165 220 All data
    傳統(tǒng)方法 PCA+SVM [14] 76.43 87.95 92.48 94.32
    ADaboost [14] 75.68 86.45 91.45 93.51
    DGM [14] 81.11 88.14 92.85 96.07
    數(shù)據(jù)增強 GAN-CNN [14] 81.80 88.35 93.88 97.03
    MGAN-CNN [14] 85.23 90.82 94.91 97.81
    新穎模型 Deep CNN [15] 77.86 86.98 93.04 95.54
    Simple CNN [16] 75.88
    Dens-CapsNet [17] 80.26 92.95 96.50 99.75
    ASC-MACN [18] 62.85 79.46 99.42
    本文方法 86.38 93.00 98.24 99.32
    下載: 導(dǎo)出CSV
  • [1] CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York: Wiley, 1991.
    [2] KREUCHER C. SAR-ATR using EO-based deep networks[C]. 2023 IEEE Radar Conference (RadarConf23), San Antonio, USA, 2023: 1–5. doi: 10.1109/RadarConf2351548.2023.10149584.
    [3] MAO Deqing, YANG Jianyu, ZHANG Yongchao, et al. Angular superresolution of real aperture radar with high-dimensional data: Normalized projection array model and adaptive reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5117216. doi: 10.1109/TGRS.2022.3203131.
    [4] MAO Deqing, YANG Jianyu, TUO Xingyu, et al. Angular superresolution of real aperture radar for target scale measurement using a generalized hybrid regularization approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5109314. doi: 10.1109/TGRS.2023.3315310.
    [5] CHOI J H, LEE M J, JEONG N H, et al. Fusion of target and shadow regions for improved SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226217. doi: 10.1109/TGRS.2022.3165849.
    [6] HUANG Zhongling, YAO Xiwen, LIU Ying, et al. Physically explainable CNN for SAR image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 25–37. doi: 10.1016/j.isprsjprs.2022.05.008.
    [7] WANG Chenwei, LUO Siyi, PEI Jifang, et al. Crucial feature capture and discrimination for limited training data SAR ATR[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 204: 291–305. doi: 10.1016/j.isprsjprs.2023.09.014.
    [8] FENG Sijia, JI Kefeng, WANG Fulai, et al. PAN: Part attention network integrating electromagnetic characteristics for interpretable SAR vehicle target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204617. doi: 10.1109/TGRS.2023.3256399.
    [9] WANG Chenwei, LUO Siyi, HUANG Yulin, et al. SAR ATR method with limited training data via an embedded feature augmenter and dynamic hierarchical-feature refiner[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5216215. doi: 10.1109/TGRS.2023.3314501.
    [10] PEARL J. Causal inference in statistics: An overview[J]. Statistics Surveys, 2009, 3: 96–146. doi: 10.1214/09-SS057.
    [11] SCH?LKOPF B, JANZING D, PETERS J, et al. On causal and anticausal learning[C]. Proceedings of the 29th International Conference on Machine Learning, Edinburgh, UK, 2012.
    [12] GREENLAND S, PEARL J, and ROBINS J M. Causal diagrams for epidemiologic research[J]. Epidemiology, 1999, 10(1): 37–48. doi: 10.1097/00001648-199901000-00008.
    [13] ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. HOG-ShipCLSNet: A novel deep learning network with hog feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210322. doi: 10.1109/TGRS.2021.3082759.
    [14] ZHENG Ce, JIANG Xue, and LIU Xingzhao. Semi-supervised SAR ATR via multi-discriminator generative adversarial network[J]. IEEE Sensors Journal, 2019, 19(17): 7525–7533. doi: 10.1109/JSEN.2019.2915379.
    [15] MORGAN D A E. Deep convolutional neural networks for ATR from SAR imagery[C]. SPIE 9475, Algorithms for Synthetic Aperture Radar Imagery XXII, Baltimore, USA, 2015: 94750F. doi: 10.1117/12.2176558.
    [16] LI Yibing, LI Xiang, SUN Qian, et al. SAR image classification using CNN embeddings and metric learning[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4002305. doi: 10.1109/LGRS.2020.3022435.
    [17] WANG Quan, XU Haixia, YUAN Liming, et al. Dense capsule network for SAR automatic target recognition with limited data[J]. Remote Sensing Letters, 2022, 13(6): 533–543. doi: 10.1080/2150704X.2022.2044089.
    [18] FENG Sijia, JI Kefeng, WANG Fulai, et al. Electromagnetic Scattering Feature (ESF) module embedded network based on ASC model for robust and interpretable SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235415. doi: 10.1109/TGRS.2022.3208333.
  • 加載中
圖(2) / 表(6)
計量
  • 文章訪問數(shù):  265
  • HTML全文瀏覽量:  105
  • PDF下載量:  50
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-08-28
  • 網(wǎng)絡(luò)出版日期:  2024-09-01
  • 刊出日期:  2024-10-30

目錄

    /

    返回文章
    返回