The Spoofing Detection Method of Navigation Terminal Using Partial Authenticated Signals
-
Key Laboratory of Satellite Navigation Technology, College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
-
摘要: 導航信號認證服務處于初步部署階段,認證信號對地覆蓋重數(shù)無法滿足獨立定位授時需求,現(xiàn)有研究對這一階段利用部分通過認證的信號,即可信信號,實現(xiàn)欺騙檢測的方法關注度較低。針對這一現(xiàn)狀,該文根據(jù)欺騙攻擊原理,提出以可信信號為基準,基于可信信號偽距殘差的欺騙檢測方法,建立該場景下的欺騙檢測模型,并分析影響所提方法檢測性能的因素。經(jīng)過仿真,在可信衛(wèi)星數(shù)目為3顆、用戶定位精度約10 m條件下,當欺騙導致的定位偏差為100 m時,該方法的平均欺騙檢測概率可達0.96。此外,該文對算法欺騙檢測盲區(qū)進行了分析,證明所提算法對于絕大部分欺騙導致的定位結果均有效。
-
關鍵詞:
- 抗欺騙 /
- 導航認證信號 /
- 接收機自主完好性監(jiān)測 /
- 偽距殘差
Abstract: The navigation signal authentication service is in the initial stage. The coverage multiple numbers of the authentication signal to ground can not meet the requirement of independent positioning and timing. The existing research has paid little attention to the deception detection method based on partially trusted signals at this stage. Aiming at the status quo, according to the principle of spoofing attack, a spoofing detection method is proposed based on the pseudo-distance residual of the authentication signal, and the spoofing detection model is established in this scenario, and the factors that affect the detection performance of the proposed method are analyzed. After simulation, the average deception detection probability of the algorithm can reach 0.96 when the positioning deviation is 100 m, the positioning accuracy is about 10 m, and the number of trusted satellites is 3. In addition, the blind area of the algorithm is analyzed, and it is proved that the algorithm is effective for most of the deception positions. -
圖 8 $ \Delta {d'^2} $與欺騙信號檢測概率之間的曲線對比圖(接收機位于北京,r=50 m, ${P_{{\text{fa}}}} = 0.01$, ${\sigma _{{\text{URE}}}} = 5.9{\text{ m}}$)
表 1 只存在時間欺騙時,不同可信衛(wèi)星數(shù)目下,算法可檢測出的接收機鐘差欺騙距離的理論值(s)
可信衛(wèi)星數(shù)目M 1 2 3 算法可檢測出的接收機鐘差欺騙 $ \ge 7.7 \times {10^{ - 8}}$ $ \ge 5.9 \times {10^{ - 8}}$ $ \ge 5.0 \times {10^{ - 8}}$ 下載: 導出CSV
表 2 仿真場景參數(shù)
參數(shù) 描述 仿真時段 2023年9月2日16:00-2023年9月3日16:00,觀測時間間隔為10 min,觀測歷元共144個 北斗星座 本文采用北斗三號衛(wèi)星星座,包括:24顆MEO衛(wèi)星,Walker24/3/1星座,衛(wèi)星軌道高度為21 528 km,軌道傾角為55°;
3顆GEO衛(wèi)星,軌道高度為35 786 km,分別定位于東經(jīng)80°, 110.5°, 140°;3顆IGSO衛(wèi)星,軌道高度35 786 km,
軌道傾角55°,相位間隔120°低軌星座 衛(wèi)星播發(fā)認證信號,為近極地星座,為Walker類型,共有60顆衛(wèi)星,6個軌道面,相位因子為1,軌道高度為1 175 km,
軌道傾角為86.5°接收機位置 隨機選擇國內(nèi)5個城市作為接收機所在位置(地心地固坐標),包括:
哈爾濱(–2661.32 ,3576.94 ,4546.01 ) km、北京(–2176.85 ,4387.47 ,4071.96 ) km、蘭州(–1231 ,5014.65 ,3736.14 ) km、
成都(–1334.67 ,5326.66 ,3234.39 ) km、海口(–2083.66 ,5620.29 ,2172.46 ) km接收機天線 最低仰角為15° 下載: 導出CSV
-
[1] CARROLL J V, VAN DYKE K, KRAEMER J H, et al. Vulnerability assessment of the U. S. transportation infrastructure that relies on GPS[C]. Proceedings of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, USA, 2001: 975–981. [2] WU Zhijun, ZHANG Yun, YANG Yiming, et al. Spoofing and anti-spoofing technologies of global navigation satellite system: A survey[J]. IEEE Access, 2020, 8: 165444–165496. doi: 10.1109/ACCESS.2020.3022294. [3] YUAN Muzi, TANG Xiaomei, and OU Gang. Authenticating GNSS civilian signals: A survey[J]. Satellite Navigation, 2023, 4(1): 6. doi: 10.1186/s43020-023-00094-6. [4] NICOLA M, MOTELLA B, PINI M, et al. Galileo OSNMA public observation phase: Signal testing and validation[J]. IEEE Access, 2022, 10: 27960–27969. doi: 10.1109/ACCESS.2022.3157337. [5] FERNáNDEZ I, RIJMEN V, ASHUR T, et al. Galileo navigation message authentication specification for signal-in-space testing - v1.0[R]. European Commission, 2016. [6] ANDERSON J M, CARROLL K L, DEVILBISS N P, et al. Chips-message robust authentication (chimera) for GPS civilian signals[C]. Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, USA, 2017: 2388–2416. doi: 10.33012/2017.15206. [7] CHAPMAN D C. Chips message robust authentication (chimera) enhancement for the L1C signal: Space segment/user segment interface[R]. IS-AGT-100, 2019. [8] MANANDHAR D and SHIBASAKI R. Signal authentication for anti-spoofing based on L1S[C]. Proceedings of the ION 2017 Pacific PNT Meeting, Honolulu, USA, 2017: 938–947. doi: 10.33012/2017.15029. [9] MANANDHAR D and SHIBASAKI R. Authenticating GALILEO open signal using QZSS signal[C]. Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation, Miami, USA, 2018: 3995–4003. doi: 10.33012/2018.15872. [10] 王磊, 李德仁, 陳銳志, 等. 低軌衛(wèi)星導航增強技術——機遇與挑戰(zhàn)[J]. 中國工程科學, 2020, 22(2): 144–152. doi: 10.15302/J-SSCAE-2020.02.018.WANG Lei, LI Deren, CHEN Ruizhi, et al. Low earth orbiter (LEO) navigation augmentation: Opportunities and challenges[J]. Strategic Study of CAE, 2020, 22(2): 144–152. doi: 10.15302/J-SSCAE-2020.02.018. [11] SUN Tianyu, HU Min, and YUN Chaoming. Low-orbit large-scale communication satellite constellation configuration performance assessment[J]. International Journal of Aerospace Engineering, 2022, 2022: 4918912. doi: 10.1155/2022/4918912. [12] S·柳辛. 使用PVT解估算來檢測和消除GNSS欺騙信號[P]. 中國, 110114695A, 2019.S·LIUXIN. Detection and elimination of GNSS spoofing signals with PVT solution estimation[P]. CN, 110114695A, 2019. [13] 張超, 呂志偉, 張倫東, 等. 欺騙干擾對GNSS/INS系統(tǒng)定位性能的影響[J]. 導航定位學報, 2022, 10(4): 20–28. doi: 10.3969/j.issn.2095-4999.2022.04.003.ZHANG Cao, LYU Zhiwei, ZHANG Lundong, et al. Influence analysis of spoofing interference on positioning performance of GNSS/INS system[J]. Journal of Navigation and Positioning, 2022, 10(4): 20–28. doi: 10.3969/j.issn.2095-4999.2022.04.003. [14] 謝鋼. GPS原理與接收機設計[M]. 北京: 電子工業(yè)出版社, 2009.XIE G. Principles of GPS and Receiver Design[M]. Beijing: Publishing House of Electronics Industry, 2009. [15] PARKINSON B W and AXELRAD P. Autonomous GPS integrity monitoring using the pseudorange residual[J]. Navigation, 1988, 35(2): 255–274. doi: 10.1002/j.2161-4296.1988.tb00955.x. [16] FU Dong, PENG Jing, GONG Hang, et al. Impact analysis of meaconing attack on timing receiver[M]. YANG Changfeng and XIE Jun. China Satellite Navigation Conference (CSNC 2021) Proceedings. Singapore: Springer, 2021: 423–434. doi: 10.1007/978-981-16-3146-7_39. -