一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

面向通感一體化的三維矩陣束聯(lián)合參數(shù)估計算法

楊小龍 張冰睿 周牧 張文

楊小龍, 張冰睿, 周牧, 張文. 面向通感一體化的三維矩陣束聯(lián)合參數(shù)估計算法[J]. 電子與信息學(xué)報, 2025, 47(1): 84-92. doi: 10.11999/JEIT240003
引用本文: 楊小龍, 張冰睿, 周牧, 張文. 面向通感一體化的三維矩陣束聯(lián)合參數(shù)估計算法[J]. 電子與信息學(xué)報, 2025, 47(1): 84-92. doi: 10.11999/JEIT240003
YANG Xiaolong, ZHANG Bingrui, ZHOU Mu, ZHANG Wen. A Joint Parameter Estimation Method Based on 3D Matrix Pencil for Integration of Sensing and Communication[J]. Journal of Electronics & Information Technology, 2025, 47(1): 84-92. doi: 10.11999/JEIT240003
Citation: YANG Xiaolong, ZHANG Bingrui, ZHOU Mu, ZHANG Wen. A Joint Parameter Estimation Method Based on 3D Matrix Pencil for Integration of Sensing and Communication[J]. Journal of Electronics & Information Technology, 2025, 47(1): 84-92. doi: 10.11999/JEIT240003

面向通感一體化的三維矩陣束聯(lián)合參數(shù)估計算法

doi: 10.11999/JEIT240003
基金項目: 國家自然科學(xué)基金(62101085),重慶市九龍坡區(qū)科技計劃項目(2022-02-005-Z),重慶市研究生科研創(chuàng)新項目(CYS23457)
詳細信息
    作者簡介:

    楊小龍:男,副教授,碩士生導(dǎo)師,研究方向為通感一體化、無線定位與感知

    張冰睿:女,碩士生,研究方向為無線定位與感知

    周牧:男,教授,博士生導(dǎo)師,研究方向為無線定位

    張文:男,碩士,研究方向為無線定位與感知

    通訊作者:

    周牧 zhoumu@cqupt.edu.cn

  • 中圖分類號: TN929.5

A Joint Parameter Estimation Method Based on 3D Matrix Pencil for Integration of Sensing and Communication

Funds: The National Natural Science Foundation of China (62101085), The Science and Technology Research Project of Chongqing Jiulongpo District (2022-02-005-Z), Chongqing Graduate Student Research Innovation Project (CYS23457)
  • 摘要: 作為一種基于軟硬件資源共享和信息共享的新型信息通信技術(shù),通感一體化(ISAC)可將無線感知集成到Wi-Fi平臺,為低成本的室內(nèi)定位提供一種高效的方法。針對室內(nèi)定位參數(shù)估計實時性與準確性問題,該文提出一種基于3維矩陣束(MP)聯(lián)合參數(shù)估計算法。首先,對信道狀態(tài)信息(CSI)數(shù)據(jù)進行分析,構(gòu)建包含到達角(AoA)、飛行時間(ToF)和多普勒頻移(DFS)的3維矩陣。其次,對3維矩陣進行平滑處理并利用3維MP算法進行參數(shù)估計,通過聚類找到直達徑。最后,利用雙角定位法進行定位,驗證該文所提算法的有效性。實驗結(jié)果表明,與多重信號分類(MUSIC)參數(shù)估計算法相比,無需復(fù)雜的峰值搜索步驟,降低了90%計算復(fù)雜度。與2維MP算法相比,加入多普勒參數(shù),使AoA估計誤差均值在會議室和教室兩種場景下分別降低了1.45°和2°。該文通過實際測試驗證了所提算法在室內(nèi)可以達到在置信度67%處平均0.56 m的定位精度。因此,該文所提算法有效地改善了現(xiàn)有室內(nèi)定位參數(shù)估計的實時性和準確性。
  • 圖  1  實驗場景圖

    圖  2  實驗平面結(jié)構(gòu)圖

    圖  3  會議室場景誤差分析圖

    圖  4  教室場景誤差分析圖

    圖  5  不同算法的運行時間

    表  1  實驗參數(shù)

    參數(shù)名稱 符號 數(shù)值
    接收天線數(shù)量 $N$ 4
    子載波數(shù)量 $M$ 49
    包的數(shù)量 $B$ 10
    矩陣束參數(shù)1 ${M_{\rm p}}$ 25
    矩陣束參數(shù)2 $ {N_{\rm p}} $ 2
    矩陣束參數(shù)3 $ {B_{\rm p}} $ 5
    下載: 導(dǎo)出CSV

    表  2  實驗參數(shù)

    算法 主要步驟 算法復(fù)雜度 參考數(shù)值
    MUSIC算法 特征值分解 $ \begin{gathered} \left\{ {{{(BMN)}^2}\left( {BMN - q} \right) + {{(BMN - q)}^2}BMN + {{(BMN)}^2}} \right\} \\ \times {\mathrm{sr}}\_{\mathrm{AoA}} \times {\mathrm{sr}}\_{\mathrm{ToF}} \times {\mathrm{sr}}\_{\mathrm{DFS}} \\ \end{gathered} $ 1.25×1016
    峰值搜索
    2維MP算法 離散傅里葉變換 $ \dfrac{{11}}{4}{({M_{\rm p}}{N_{\rm p}})^3} + 4{({M_{\rm p}}{N_{\rm p}})^2}{K_M}{K_N} $ 1.28×106
    奇異值分解
    3維MP算法 奇異值分解 $ 11{({B_{\rm p}}{M_{\rm p}}{N_{\rm p}})^3} + 4{({B_{\rm p}}{M_{\rm p}}{N_{\rm p}})^2}2{K_B}{K_M}{K_N} $ 2.84×108
    下載: 導(dǎo)出CSV
  • [1] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [2] KIM K, KIM J, and JOUNG J. A survey on system configurations of integrated sensing and communication (ISAC) systems[C]. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, The Republic of Korea, 2022: 1176–1178. doi: 10.1109/ICTC55196.2022.9952602.
    [3] DING Jianyang, WANG Yong, SI Hongyan, et al. Three-dimensional indoor localization and tracking for mobile target based on WiFi sensing[J]. IEEE Internet of Things Journal, 2022, 9(21): 21687–21701. doi: 10.1109/JIOT.2022.3181592.
    [4] DUBEY A, SOOD P, SANTOS J, et al. An enhanced approach to imaging the indoor environment using WiFi RSSI measurements[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8415–8430. doi: 10.1109/TVT.2021.3101009.
    [5] LI Fangmin, ZHAO Yubin, LI Xiaofan, et al. Wimage: Crowd sensing based heterogeneous information fusion for indoor localization[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea (South), 2020: 1–6. doi: 10.1109/WCNC45663.2020.9120796.
    [6] JIN Yue, TIAN Zengshan, ZHOU Mu, et al. MuTrack: Multiparameter based indoor passive tracking system using commodity WiFi[C]. ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148887.
    [7] JIN Yue, TIAN Zengshan, LI Yong, et al. A novel device-free tracking system using WiFi: Turning fading channel from foe to friend[C]. ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148609.
    [8] 田增山, 廉穎慧, 周牧, 等. 基于Wi-Fi多維參數(shù)特征的無源目標跟蹤技術(shù)[J]. 電子學(xué)報, 2020, 48(8): 1572–1579. doi: 10.3969/j.issn.0372-2112.2020.08.016.

    TIAN Zengshan, LIAN Yinghui, ZHOU Mu, et al. Passive target tracking technology based on Wi-Fi multi-dimensional parameter feature[J]. Acta Electronica Sinica, 2020, 48(8): 1572–1579. doi: 10.3969/j.issn.0372-2112.2020.08.016.
    [9] WANG Zhe, KONG Linghe, LIU Xue, et al. Embracing channel estimation in multi-packet reception of ZigBee[J]. IEEE Transactions on Mobile Computing, 2023, 22(5): 2693–2708. doi: 10.1109/TMC.2021.3131472.
    [10] ZHUANG Yuan, ZHANG Chongyang, HUAI Jianzhu, et al. Bluetooth localization technology: Principles, applications, and future trends[J]. IEEE Internet of Things Journal, 2022, 9(23): 23506–23524. doi: 10.1109/JIOT.2022.3203414.
    [11] LIU Zheng, FU Zhe, LI Tongyun, et al. A phase and RSSI-based method for indoor localization using passive RFID system with mobile platform[J]. IEEE Journal of Radio Frequency Identification, 2022, 6: 544–551. doi: 10.1109/JRFID.2022.3179620.
    [12] YU Jintao, XIAO Bing, and LI Jie. Research on UWB indoor location approach in interference environment[C]. 2022 34th Chinese Control and Decision Conference (CCDC), Hefei, China, 2022: 3417–3420. doi: 10.1109/CCDC55256.2022.10034389.
    [13] 田增山, 未平, 李澤, 等. 基于Wi-Fi的室內(nèi)實時角度定位算法[J]. 電子學(xué)報, 2021, 49(2): 408–416. doi: 10.12263/DZXB.20190352.

    TIAN Zengshan, WEI Ping, LI Ze, et al. Indoor real-time localization algorithm based on angle of arrival of Wi-Fi signal[J]. Acta Electronica Sinica, 2021, 49(2): 408–416. doi: 10.12263/DZXB.20190352.
    [14] CHEN Longliang, QI Wangdong, YUAN En, et al. Joint 2-D DOA and TOA estimation for multipath OFDM signals based on three antennas[J]. IEEE Communications Letters, 2018, 22(2): 324–327. doi: 10.1109/LCOMM.2017.2769678.
    [15] NOMURA A, SUGASAKI M, TSUBOUCHI K, et al. Device-free multi-person indoor localization using the change of ToF[C]. 2023 IEEE International Conference on Pervasive Computing and Communications (PerCom), Atlanta, USA, 2023: 190–199. doi: 10.1109/PERCOM56429.2023.10099384.
    [16] TADAYON N, RAHMAN M T, HAN Shuo, et al. Decimeter ranging with channel state information[J]. IEEE Transactions on Wireless Communications, 2019, 18(7): 3453–3468. doi: 10.1109/TWC.2019.2914194.
    [17] ZHANG Dongheng, HU Yang, and CHEN Yan. MTrack: Tracking multiperson moving trajectories and vital signs with radio signals[J]. IEEE Internet of Things Journal, 2021, 8(5): 3904–3914. doi: 10.1109/JIOT.2020.3025820.
    [18] LI Xinyu, ZHANG J A, WU Kai, et al. CSI-ratio-based Doppler frequency estimation in integrated sensing and communications[J]. IEEE Sensors Journal, 2022, 22(21): 20886–20895. doi: 10.1109/JSEN.2022.3208272.
    [19] XIE Yaxiong, LI Zhenjiang, and LI Mo. Precise power delay profiling with commodity Wi-Fi[J]. IEEE Transactions on Mobile Computing, 2019, 18(6): 1342–1355. doi: 10.1109/TMC.2018.2860991.
    [20] TAN Bo, BURROWS A, PIECHOCKI R, et al. Wi-Fi based passive human motion sensing for in-home healthcare applications[C]. 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 2015: 609–614. doi: 10.1109/WF-IoT.2015.7389123.
    [21] KHAN U M, KABIR Z, HASSAN S A, et al. A deep learning framework using passive Wi-Fi sensing for respiration monitoring[C]. GLOBECOM 2017 - 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8255027.
    [22] KOTARU M, JOSHI K, BHARADIA D, et al. SpotFi: Decimeter level localization using WiFi[C]. 2015 ACM Conference on Special Interest Group on Data Communication, London, UK, 2015: 269–282. doi: 10.1145/2785956.2787487.
    [23] GABER A and OMAR A. A study of wireless indoor positioning based on joint TDOA and DOA estimation using 2-D matrix pencil algorithms and IEEE 802.11ac[J]. IEEE Transactions on Wireless Communications, 2015, 14(5): 2440–2454. doi: 10.1109/TWC.2014.2386869.
    [24] CHEN Zhe, ZHU Guorong, WANG Sulei, et al. M3: Multipath assisted Wi-Fi localization with a single access point[J]. IEEE Transactions on Mobile Computing, 2021, 20(2): 588–602. doi: 10.1109/TMC.2019.2950315.
    [25] SOLTANAGHAEI E, KALYANARAMAN A, and WHITEHOUSE K. Multipath triangulation: Decimeter-level WiFi localization and orientation with a single unaided receiver[C]. The 16th Annual International Conference on Mobile Systems, Applications, and Services, Munich, Germany, 2018: 376–388. doi: 10.1145/3210240.3210347.
    [26] YANG Runming, YANG Xiaolong, WANG Jiacheng, et al. Decimeter level indoor localization using WiFi channel state information[J]. IEEE Sensors Journal, 2022, 22(6): 4940–4950. doi: 10.1109/JSEN.2021.3067144.
    [27] SHE Yuan, YANG Xiaolong, ZHOU Mu, et al. Three-dimensional joint parameter estimation algorithm based on service antenna[C]. 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2020, 442–447. doi: 10.1109/WCSP49889.2020.9299753.
    [28] LIU Aijun, GUO Zhichao, and WANG Mingfeng. Time-frequency spatial smoothing MUSIC algorithm for DOA estimation based on co-prime array[C]. Proceedings of 2018 CSPS Volume II: Signal Processing on Communications, Signal Processing, and Systems, Dalian, China, 2020: 1355–1363. doi: 10.1007/978-981-13-6504-1_161.
    [29] YILMAZER N, KOH J, and SARKAR T K. Utilization of a unitary transform for efficient computation in the matrix pencil method to find the direction of arrival[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 175–181. doi: 10.1109/TAP.2005.861567.
    [30] FREY B J and DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972–976. doi: 10.1126/science.1136800.
    [31] YANG Xiaolong, GAO Meng, XIE Liangbo, et al. Multi-frequency based CSI compression for vehicle localization in intelligent transportation system[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(3): 2719–2732. doi: 10.1109/TITS.2023.3310032.
  • 加載中
圖(5) / 表(2)
計量
  • 文章訪問數(shù):  316
  • HTML全文瀏覽量:  100
  • PDF下載量:  50
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-07-03
  • 網(wǎng)絡(luò)出版日期:  2024-08-02
  • 刊出日期:  2025-01-31

目錄

    /

    返回文章
    返回