一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

一種基于人體輪廓形變場的雙流網(wǎng)絡(luò)步態(tài)識別方法

霍威 王科 唐俊 王年 梁棟

霍威, 王科, 唐俊, 王年, 梁棟. 一種基于人體輪廓形變場的雙流網(wǎng)絡(luò)步態(tài)識別方法[J]. 電子與信息學(xué)報, 2024, 46(10): 4062-4071. doi: 10.11999/JEIT231025
引用本文: 霍威, 王科, 唐俊, 王年, 梁棟. 一種基于人體輪廓形變場的雙流網(wǎng)絡(luò)步態(tài)識別方法[J]. 電子與信息學(xué)報, 2024, 46(10): 4062-4071. doi: 10.11999/JEIT231025
HUO Wei, WANG Ke, TANG Jun, WANG Nian, LIANG Dong. A Dual-stream Network Based on Body Contour Deformation Field for Gait Recognition[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4062-4071. doi: 10.11999/JEIT231025
Citation: HUO Wei, WANG Ke, TANG Jun, WANG Nian, LIANG Dong. A Dual-stream Network Based on Body Contour Deformation Field for Gait Recognition[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4062-4071. doi: 10.11999/JEIT231025

一種基于人體輪廓形變場的雙流網(wǎng)絡(luò)步態(tài)識別方法

doi: 10.11999/JEIT231025
基金項目: 國家自然科學(xué)基金(62273001, 61772032),安徽省重點研究與開發(fā)計劃(2022k07020006),安徽高校自然科學(xué)研究重大項目(KJ2021ZD0004)
詳細信息
    作者簡介:

    霍威:男,博士生,研究方向為圖像處理

    王科:男,講師,研究方向為機器學(xué)習(xí)、模式識別

    唐?。耗?,教授,研究方向為圖像處理、模式識別

    王年:男,教授,研究方向為信號處理、模式識別

    梁棟:男,教授,研究方向為信號處理、模式識別

    通訊作者:

    唐俊 tangjunahu@163.com

  • 中圖分類號: TN911.73;TP391.41

A Dual-stream Network Based on Body Contour Deformation Field for Gait Recognition

Funds: The National Natural Science Foundation of China (62273001, 61772032), Anhui Provincial Key Research and Development Project (2022k07020006), The Natural Science Research Key Project of Anhui Educational Committee (KJ2021ZD0004)
  • 摘要: 步態(tài)識別易受相機視角、服裝和攜帶物等外界因素影響而性能下降。為此,該文將非剛性點集配準(zhǔn)引入步態(tài)識別,利用相鄰步態(tài)幀之間的形變場表征行走過程中人體輪廓發(fā)生的位移量,從而提升對人體形態(tài)變化的動態(tài)感知能力。在此基礎(chǔ)上,該文提出一種基于人體輪廓形變場的雙流卷積神經(jīng)網(wǎng)絡(luò)GaitDef,該網(wǎng)絡(luò)模型由形變場和步態(tài)剪影兩路特征提取分支構(gòu)成。針對形變場數(shù)據(jù)的稀疏性設(shè)計多尺度特征提取模塊,以獲取形變場的多層次空間結(jié)構(gòu)信息。針對步態(tài)剪影提出動態(tài)差異捕捉模塊和上下文信息增強模塊,以捕捉動態(tài)區(qū)域的變化特性和利用上下文信息增強步態(tài)表征能力。雙分支網(wǎng)絡(luò)的輸出特征經(jīng)過特征融合得到最終的步態(tài)表示。大量實驗結(jié)果表明了該文方法的有效性,在CASIA-B和CCPG數(shù)據(jù)集上,該文方法的平均Rank-1準(zhǔn)確率分別能達到93.5%和68.3%。
  • 圖  1  GaitDef網(wǎng)絡(luò)框架

    圖  2  多尺度特征提取模塊(MSFEM)的網(wǎng)絡(luò)結(jié)構(gòu)

    圖  3  幀間差異性和上下文信息特征提取模塊(ACFEM)

    圖  4  人體輪廓點離散化和配準(zhǔn)過程

    圖  5  基于不同人體輪廓點數(shù)量的形變場分支網(wǎng)絡(luò)在CASIA-B數(shù)據(jù)集上的實驗結(jié)果

    表  1  Rank-1識別準(zhǔn)確率在CASIA-B數(shù)據(jù)集上的對比結(jié)果,不包括相同視角的情況(%)

    驗證集 NM#1-4 0°~180° 均值
    探針集 18° 36° 54° 72° 90° 108° 126° 144° 162° 180°
    NM#
    5-6
    GaitSet AAAI19 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
    GaitPart CVPR20 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
    GaitGL ICCV21 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4
    CSTL ICCV21 97.2 99.0 99.2 98.1 96.2 95.5 97.7 98.7 99.2 98.9 96.5 97.8
    Lagrange CVPR22 95.2 97.8 99.0 98.0 96.9 94.6 96.9 98.8 98.9 98.0 91.5 96.9
    MetaGait ECCV22 97.3 99.2 99.5 99.1 97.2 95.5 97.6 99.1 99.3 99.1 96.7 98.1
    GaitGCI-T CVPR23 97.9
    GaitDef 本文 95.3 98.1 99.2 98.0 96.7 96.0 98.6 99.4 99.2 99.1 94.1 97.6
    BG#
    5-6
    GaitSet AAAI19 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
    GaitPart CVPR20 89.1 94.8 96.7 95.1 88.3 94.9 89.0 93.5 96.1 93.8 85.8 91.5
    GaitGL ICCV21 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5
    CSTL ICCV21 91.7 96.5 97.0 95.4 90.9 88.0 91.5 95.8 97.0 95.5 90.3 93.6
    Lagrange CVPR22 89.9 94.5 95.9 94.6 93.9 88.0 91.1 96.3 98.1 97.3 88.9 93.5
    MetaGait ECCV22 92.9 96.7 97.1 96.4 94.7 90.4 92.9 97.2 98.5 98.1 92.3 95.2
    GaitGCI-T CVPR23 95.0
    GaitDef 本文 93.8 97.0 97.1 96.7 95.8 92.5 95.2 97.5 98.3 97.0 92.0 95.7
    CL#
    5-6
    GaitSet AAAI19 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
    GaitPart CVPR20 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
    GaitGL ICCV21 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6
    CSTL ICCV21 78.1 89.4 91.6 86.6 82.1 79.9 81.8 86.3 88.7 86.6 75.3 84.2
    Lagrange CVPR22 81.6 91.0 94.8 92.2 85.5 82.1 86.0 89.8 90.6 86.0 73.5 86.6
    MetaGait ECCV22 80.0 91.8 93.0 87.8 86.5 82.9 85.2 90.0 90.8 89.3 78.4 86.9
    GaitGCI-T CVPR23 86.4
    GaitDef 本文 77.8 92.8 94.2 91.0 87.7 82.7 86.4 90.1 91.9 88.5 75.6 87.2
    下載: 導(dǎo)出CSV

    表  2  Rank-1識別準(zhǔn)確率在CCPG數(shù)據(jù)集上的對比結(jié)果,不包括相同視角的情況(%)

    相機編號
    1 2 3 4 5 6 7 8 9 10 均值
    CL-FULL GaitSet AAAI19 50.6 44.7 57.0 63.8 59.2 61.4 58.3 65.9 62.5 67.4 59.1
    GaitPart CVPR20 49.8 42.4 56.5 60.3 58.8 62.4 56.1 63.7 62.1 66.1 57.8
    GaitGL ICCV21 56.0 47.9 60.9 65.8 60.7 64.9 58.2 67.8 68.2 65.7 61.6
    GaitDef 本文 59.3 52.3 65.4 66.5 66.3 70.3 62.9 70.1 68.5 72.3 65.4
    CL-UP GaitSet AAAI19 59.2 56.0 64.2 65.2 66.8 70.7 66.0 66.3 64.5 72.2 65.1
    GaitPart CVPR20 58.6 52.3 62.4 65.1 65.9 68.3 61.8 65.8 64.4 67.6 63.2
    GaitGL ICCV21 61.8 59.1 67.4 68.9 68.6 72.3 65.0 71.6 73.9 69.8 67.8
    GaitDef 本文 66.1 62.4 71.2 71.2 72.7 76.8 69.3 72.9 73.0 75.6 71.1
    CL-DN GaitSet AAAI19 59.9 52.9 62.7 68.0 65.1 66.3 63.7 69.6 67.6 72.4 64.8
    GaitPart CVPR20 58.2 49.6 61.1 65.5 64.9 68.0 60.8 66.2 69.4 69.4 63.3
    GaitGL ICCV21 63.4 51.7 63.7 65.1 63.4 67.1 59.3 68.3 71.6 66.9 64.1
    GaitDef 本文 63.8 51.2 62.5 62.5 66.8 68.9 61.2 69.1 70.0 69.4 64.5
    BG GaitSet AAAI19 64.3 54.8 69.9 74.1 69.6 73.3 67.5 67.7 66.2 73.6 68.1
    GaitPart CVPR20 62.7 56.0 67.1 68.3 70.1 72.8 63.4 67.4 65.0 72.9 66.6
    GaitGL ICCV21 64.7 55.0 71.6 72.6 67.3 74.9 66.0 74.1 73.1 75.4 69.5
    GaitDef 本文 67.6 55.2 74.1 76.0 72.3 77.0 71.2 75.2 74.6 77.8 72.1
    下載: 導(dǎo)出CSV

    表  3  不同分支網(wǎng)絡(luò)結(jié)構(gòu)在CASIA-B數(shù)據(jù)集上的Rank-1識別準(zhǔn)確率,不包括相同視角的情況(%)

    網(wǎng)絡(luò)分支 特征提取模塊結(jié)構(gòu) NM BG CL 均值
    形變場分支 MSFEM只使用卷積核尺寸為(3,3,3)的卷積 88.9 80.2 58.1 75.7
    MSFEM只使用卷積核尺寸為(3,5,5)的卷積 92.4 85.3 66.9 81.5
    MSFEM只包含卷積核尺寸為(3,7,7)的卷積 92.4 84.8 67.3 81.5
    MSFEM使用卷積核尺寸為(3,3,3)和(3,5,5)的卷積 92.5 85.7 67.6 81.9
    MSFEM使用卷積核尺寸為(3,3,3)和(3,7,7)的卷積 92.8 85.4 67.3 81.8
    MSFEM使用卷積核尺寸為(3,5,5)和(7,7,7)的卷積 93.1 85.7 67.9 82.2
    MSFEM 93.0 86.4 69.2 82.9
    步態(tài)剪影分支 ACFEM只使用全局特征分支 96.8 94.1 84.1 91.7
    ACFEM只使用幀間差異性特征提取分支 97.0 94.6 84.6 92.1
    ACFEM只使用上下文特征提取分支 96.6 94.0 83.7 91.4
    ACFEM使用全局特征和幀間差異性特征提取分支 97.2 95.3 86.1 92.9
    ACFEM使用全局特征和上下文特征提取分支 97.2 94.7 85.2 92.4
    ACFEM使用幀間差異性特征和上下文特征提取分支 97.1 95.1 86.4 92.9
    ACFEM 97.5 95.4 86.6 93.2
    特征融合 形變場分支(MSFEM)+步態(tài)剪影分支(ACFEM) 97.6 95.7 87.2 93.5
    下載: 導(dǎo)出CSV

    表  4  不同分支網(wǎng)絡(luò)結(jié)構(gòu)在CCPG數(shù)據(jù)集上的Rank-1識別準(zhǔn)確率,不包括相同視角的情況(%)

    網(wǎng)絡(luò)分支特征提取模塊結(jié)構(gòu)CL-FullCL-UPCL-DNBG均值
    形變場分支MSFEM50.559.857.561.457.3
    步態(tài)剪影分支ACFEM62.067.562.868.265.1
    特征融合形變場分支(MSFEM)+步態(tài)剪影分支(ACFEM)65.471.164.572.168.3
    下載: 導(dǎo)出CSV

    表  5  3元組損失函數(shù)中的不同邊界值在CASIAB數(shù)據(jù)集上的Rank-1識別準(zhǔn)確率對比,不包括相同視角的情況(%)

    m NM BG CL 均值
    0.1 97.3 95.3 85.9 92.8
    0.2 97.6 95.7 87.2 93.5
    0.3 97.3 94.9 84.9 92.4
    0.4 97.3 94.9 85.2 92.5
    0.5 97.5 95.0 84.6 92.4
    下載: 導(dǎo)出CSV

    表  6  平均Rank-1識別準(zhǔn)確率(%)、參數(shù)量(M)和浮點計算次數(shù)(G)在CASIA-B數(shù)據(jù)集上的對比

    方法 平均Rank-1
    識別準(zhǔn)確率
    參數(shù)量 浮點計算次數(shù)
    GaitSet 84.2 2.59 6.54
    GaitPart 88.8 1.20 113.92
    GaitGL 91.8 2.49 25.24
    GaitDef(形變場分支) 82.9 8.07 136.45
    GaitDef(步態(tài)剪影分支) 93.2 2.48 55.91
    GaitDef(形變場分支+
    步態(tài)剪影分支)
    93.5 10.55 178.38
    下載: 導(dǎo)出CSV
  • [1] 楊旗, 薛定宇. 基于雙尺度動態(tài)貝葉斯網(wǎng)絡(luò)及多信息融合的步態(tài)識別[J]. 電子與信息學(xué)報, 2012, 34(5): 1148–1153. doi: 10.3724/SP.J.1146.2011.01012.

    YANG Qi and XUE Dingyu. Gait recognition based on two-scale dynamic Bayesian network and more information fusion[J]. Journal of Electronics & Information Technology, 2012, 34(5): 1148–1153. doi: 10.3724/SP.J.1146.2011.01012.
    [2] 王茜, 蔡競, 郭柏冬, 等. 面向公共安全的步態(tài)識別技術(shù)研究[J]. 中國人民公安大學(xué)學(xué)報: 自然科學(xué)版, 2023, 29(1): 68–76. doi: 10.3969/j.issn.1007-1784.2023.01.009.

    WANG Qian, CAI Jing, GUO Baidong, et al. Research on gait recognition technology for public security[J]. Journal of People’s Public Security University of China: Science and Technology, 2023, 29(1): 68–76. doi: 10.3969/j.issn.1007-1784.2023.01.009.
    [3] LIAO Rijun, YU Shiqi, AN Weizhi, et al. A model-based gait recognition method with body pose and human prior knowledge[J]. Pattern Recognition, 2020, 98: 107069. doi: 10.1016/j.patcog.2019.107069.
    [4] CAO Zhe, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1302–1310. doi: 10.1109/CVPR.2017.143.
    [5] TEEPE T, GILG J, HERZOG F, et al. Towards a deeper understanding of skeleton-based gait recognition[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 1568–1576. doi: 10.1109/CVPRW56347.2022.00163.
    [6] AN Weizhi, YU Shiqi, MAKIHARA Y, et al. Performance evaluation of model-based gait on multi-view very large population database with pose sequences[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2(4): 421–430. doi: 10.1109/tbiom.2020.3008862.
    [7] WANG Likai, CHEN Jinyan, and LIU Yuxin. Frame-level refinement networks for skeleton-based gait recognition[J]. Computer Vision and Image Understanding, 2022, 222: 103500. doi: 10.1016/j.cviu.2022.103500.
    [8] TEEPE T, KHAN A, GILG J, et al. Gaitgraph: Graph convolutional network for skeleton-based gait recognition[C]. 2021 IEEE International Conference on Image Processing, Anchorage, USA, 2021: 2314–2318. doi: 10.1109/icip42928.2021.9506717.
    [9] LIAO Rijun, CAO Chunshui, GARCIA E B, et al. Pose-based temporal-spatial network (PTSN) for gait recognition with carrying and clothing variations[C]. The 12th Chinese Conference on Biometric Recognition, Shenzhen, China, 2017: 474–483. doi: 10.1007/978-3-319-69923-3_51.
    [10] LI Xiang, MAKIHARA Y, XU Chi, et al. End-to-end model-based gait recognition[C]. The 15th Asian Conference on Computer Vision, Kyoto, Japan, 2020: 3–20. doi: 10.1007/978-3-030-69535-4_1.
    [11] HAN Ju and BHANU B. Individual recognition using gait energy image[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(2): 316–322. doi: 10.1109/TPAMI.2006.38.
    [12] LIU Jianyi and ZHENG Nanning. Gait history image: A novel temporal template for gait recognition[C]. 2007 IEEE International Conference on Multimedia and Expo, Beijing, China, 2007: 663–666. doi: 10.1109/ICME.2007.4284737.
    [13] CHEN Changhong, LIANG Jimin, ZHAO Heng, et al. Frame difference energy image for gait recognition with incomplete silhouettes[J]. Pattern Recognition Letters, 2009, 30(11): 977–984. doi: 10.1016/j.patrec.2009.04.012.
    [14] CHAO Hanqing, HE Yiwei, ZHANG Junping, et al. GaitSet: Regarding gait as a set for cross-view gait recognition[C]. The 33th AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 8126–8133. doi: 10.1609/aaai.v33i01.33018126.
    [15] HOU Saihui, CAO Chunshui, LIU Xu, et al. Gait lateral network: Learning discriminative and compact representations for gait recognition[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 382–398. doi: 10.1007/978-3-030-58545-7_22.
    [16] LIN Beibei, ZHANG Shunli, and YU Xin. Gait recognition via effective global-local feature representation and local temporal aggregation[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 14628–14636. doi: 10.1109/ICCV48922.2021.01438.
    [17] WANG Ming, LIN Beibei, GUO Xianda, et al. GaitStrip: Gait recognition via effective strip-based feature representations and multi-level framework[C]. The 16th Asian Conference on Computer Vision, Macao, China, 2023: 711–727. doi: 10.1007/978-3-031-26316-3_42.
    [18] LI Huakang, QIU Yidan, ZHAO Huimin, et al. GaitSlice: A gait recognition model based on spatio-temporal slice features[J]. Pattern Recognition, 2022, 124: 108453. doi: 10.1016/j.patcog.2021.108453.
    [19] FAN Chao, PENG Yunjie, CAO Chunhui, et al. GaitPart: Temporal part-based model for gait recognition[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 14213–14221. doi: 10.1109/CVPR42600.2020.01423.
    [20] HUANG Xiaohu, ZHU Duowang, WANG Hao, et al. Context-sensitive temporal feature learning for gait recognition[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 12889–12898. doi: 10.1109/ICCV48922.2021.01267.
    [21] LIN Beibei, ZHANG Shunli, and BAO Feng. Gait recognition with multiple-temporal-scale 3D convolutional neural network[C]. The 28th ACM International Conference on Multimedia, Seattle, USA, 2020: 3054–3062. doi: 10.1145/3394171.3413861.
    [22] CHAI Tianrui, LI Annan, ZHANG Shaoxiong, et al. Lagrange motion analysis and view embeddings for improved gait recognition[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 20217–20226. doi: 10.1109/CVPR52688.2022.01961.
    [23] LIANG Junhao, FAN Chao, HOU Saihui, et al. GaitEdge: Beyond plain end-to-end gait recognition for better practicality[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 375–390. doi: 10.1007/978-3-031-20065-6_22.
    [24] CHUI H and RANGARAJAN A. A new point matching algorithm for non-rigid registration[J]. Computer Vision and Image Understanding, 2003, 89(2/3): 114–141. doi: 10.1016/s1077-3142(03)00009-2.
    [25] YU Shiqi, TAN Daoliang, and TAN Tieniu. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[C]. The 18th International Conference on Pattern Recognition, Hong Kong, China 2006: 441–444. doi: 10.1109/icpr.2006.67.
    [26] LI Weijia, HOU Saihui, ZHANG Chunjie, et al. An in-depth exploration of person re-identification and gait recognition in cloth-changing conditions[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 13824–13833. doi: 10.1109/CVPR52729.2023.01328.
    [27] DOU Huanzhang, ZHANG Pengyi, SU Wei, et al. MetaGait: Learning to learn an Omni sample adaptive representation for gait recognition[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 357–374. doi: 10.1007/978-3-031-20065-6_21.
    [28] DOU Huanzhang, ZHANG Pengyi, SU Wei, et al. GaitGCI: Generative counterfactual intervention for gait recognition[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 5578–5588. doi: 10.1109/cvpr52729.2023.00540.
  • 加載中
圖(5) / 表(6)
計量
  • 文章訪問數(shù):  256
  • HTML全文瀏覽量:  111
  • PDF下載量:  46
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-09-19
  • 修回日期:  2024-09-04
  • 網(wǎng)絡(luò)出版日期:  2024-09-16
  • 刊出日期:  2024-10-30

目錄

    /

    返回文章
    返回