3DSARBuSim 1.0:人造建筑高分辨星載SAR三維成像仿真數(shù)據(jù)集
doi: 10.11999/JEIT230882
-
中山大學(xué)電子與通信工程學(xué)院 深圳 518107
3DSARBuSim 1.0: High-Resolution Space Borne SAR 3D Imaging Simulation Dataset of Man-Made Buildings
-
School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen 518107, China
-
摘要: 層析合成孔徑雷達(dá)(Tomographic Synthetic Aperture Radar, TomoSAR)成像技術(shù)可有效解決陡峭地形疊掩恢復(fù)難題,因此成為城市測繪技術(shù)的研究熱點之一?;诠_數(shù)據(jù)集的評估是TomoSAR算法研究與系統(tǒng)論證的必要過程,但目前存在的公開數(shù)據(jù)集缺乏相應(yīng)的地物模型真值,無法對算法進(jìn)行定量驗證。為解決這一問題,并進(jìn)一步推動TomoSAR技術(shù)的發(fā)展,該文首先提出一種基于射線追蹤的先進(jìn)星載雷達(dá)模擬器(Ray Tracing Space Borne Radar Advanced Simulator, RT-SBRAS),相較過往方法,該模擬器可快速穩(wěn)定地模擬復(fù)雜建筑物星載SAR圖像?;诖?,構(gòu)建了人造建筑物高分辨SAR三維成像仿真(3D SAR Building Simulation, 3DSARBuSim)數(shù)據(jù)集的1.0版本,其中包含8個典型建筑物場景的雙頻段多航過全鏈路仿真數(shù)據(jù)。最后給出正交匹配追蹤(Orthogonal Matching Pursuit, OMP)算法和雙頻OMP算法在所提數(shù)據(jù)集上的驗證實驗,該數(shù)據(jù)集可對算法進(jìn)行清晰、準(zhǔn)確的定量比較。
-
關(guān)鍵詞:
- 合成孔徑雷達(dá)(SAR) /
- 層析成像 /
- 雙頻 /
- 數(shù)據(jù)集
Abstract: Tomographic Synthetic Aperture Radar (TomoSAR) can effectively recover the information of ground objects in steep terrain, and is one of the research hotspots in urban mapping. However, the current public data sets lack the true values of the object models, and cannot quantitatively verify the TomoSAR algorithm. To solve this problem and further promote the development of TomoSAR technology, this paper first proposes an RT-SBRAS (Ray Tracing Based Space Borne Radar Advanced Simulator), which can quickly and stably simulate the spaceborne SAR images of complex buildings compared with previous methods. Based on this, the 1.0 version of the 3D SAR Building Simulation (3DSARBuSim) data set is constructed, which contains the full-link simulation data of eight typical building scenes in dual-band and multi-pass. Finally, Orthogonal Matching Pursuit (OMP) and dual-frequency OMP algorithms are verified on the proposed data set, and the data set can provide clear and accurate quantitative comparison for the algorithms.-
Key words:
- Synthetic Aperture Radar (SAR) /
- Tomography /
- Dual-frequency /
- Data set
-
表 1 分布式干涉SAR衛(wèi)星軌道六根數(shù)
序號 參數(shù) 半長軸a(km) 偏心率e 軌道傾角i(°) 升交點赤經(jīng)$\varOmega $(°) 近地點幅角ω(°) 真近點角f(°) 1 6893.38 0.00135 97.4478 295.305 66.7208 76.6798 30 6893.38 0.00138 97.4535 295.314 72.2645 71.1363 下載: 導(dǎo)出CSV
表 2 3DSARBUsim 1.0數(shù)據(jù)集衛(wèi)星雷達(dá)載荷仿真參數(shù)
參數(shù) 數(shù)值 工作頻率1 (GHz) 9.6 工作頻率2 (GHz) 7.2 下視角 (°) 36.52 脈沖重復(fù)頻率 (Hz) 3785 接收信號采樣頻率 (MHz) 400 發(fā)射信號帶寬 (MHz) 300 發(fā)射信號峰值功率 (W) 7680 發(fā)射信號脈寬 (s) 4.7×10–5 圖像方位向采樣頻率 (Hz) 7570 理論方位分辨率 (m) 1.01 理論斜距分辨率 (m) 0.50 下載: 導(dǎo)出CSV
表 3 數(shù)據(jù)集文件構(gòu)成
序號 文件后綴 說明 1 *.skp 各建筑物原始三維模型文件 2 *BulidingPc[Name].dat 各建筑物場景構(gòu)建結(jié)果點云文件 3 *BulidingSLC[Name].dat 各建筑物雙頻段SLC數(shù)據(jù),float32格式,實部虛部交替存放 4 *Parameters.dat 實現(xiàn)三維成像所需要的詳盡參數(shù),包括衛(wèi)星軌道數(shù)據(jù)、天線相位中心數(shù)據(jù)、雷達(dá)系統(tǒng)參數(shù)等 5 *readme.pdf 說明文件,給出數(shù)據(jù)集中文件數(shù)據(jù)存儲地址、字節(jié)數(shù) 下載: 導(dǎo)出CSV
表 6 算法恢復(fù)雙頻、單頻數(shù)據(jù)三維場景重建完整性和精確度
指標(biāo) 波段 倫敦橋 悉尼
歌劇院巴黎
圣母院泰姬陵 黃鶴樓 埃菲爾鐵塔 圣巴西勒大教堂 希臘
萬神殿完整性(m) C 44.6201 5.1023 16.1274 10.8159 2.1040 6.6170 7.9663 5.6728 X 64.3135 6.5311 14.9781 20.7736 2.4556 17.6414 6.5897 5.6028 雙頻 4.3683 4.1709 13.0377 10.6187 2.6998 9.5862 4.5173 3.1208 精確度(m) C 20.3231 7.1584 2.3680 2.6077 11.2004 4.2615 2.0330 6.2672 X 28.3335 15.0973 4.2324 3.8414 9.5589 4.6720 2.1939 6.0266 雙頻 3.5853 3.2969 5.4178 3.4100 8.3067 4.0461 2.3919 5.3200 下載: 導(dǎo)出CSV
-
[1] KNAELL K K and CARDILLO G P. Radar tomography for the generation of three-dimensional images[J]. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(2): 54–60. doi: 10.1049/ip-rsn:19951791. [2] WEBB J L H and MUNSON D C. Radar imaging of three-dimensional surfaces using limited data[C]. Proceedings of the International Conference on Image Processing, Washington, USA, 1995: 136–139. doi: 10.1109/ICIP.1995.529058. [3] REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873. [4] FORNARO G, LOMBARDINI F, and SERAFINO F. Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 702–714. doi: 10.1109/TGRS.2005.843567. [5] MEGLIO F, PANARIELLO G, and SCHIRINZI G. Three dimensional SAR image focusing from non-uniform samples[C]. Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 528–531. doi: 10.1109/IGARSS.2007.4422847. [6] LOMBARDINI F and REIGBER A. Adaptive spectral estimation for multibaseline SAR tomography with airborne L-band data[C]. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 2014–2016. doi: 10.1109/IGARSS.2003.1294324. [7] GINI F and LOMBARDINI F. Multibaseline cross-track SAR interferometry: A signal processing perspective[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 71–93. doi: 10.1109/MAES.2005.1499278. [8] GUILLASO S and REIGBER A. Polarimetric SAR tomography[C]. Proceedings of the 2nd International Workshop POLINSAR 2005, Frascati, Italy, 2005: 4. [9] BUDILLON A, EVANGELISTA A, and SCHIRINZI G. SAR tomography from sparse samples[C]. Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: 865–868. doi: 10.1109/IGARSS.2009.5417514. [10] HOMER J, LONGSTAFF I D, SHE Z, et al. High resolution 3-D imaging via multi-pass SAR[J]. IEE Proceedings - Radar, Sonar and Navigation, 2002, 149(1): 45–50. doi: 10.1049/ip-rsn:20020059. [11] SUN Xiaofan, WANG Bingnan, XIANG Maosheng, et al. Machine-learning inversion of forest vertical structure based on 2-D-SGVBVoG model for P-band Pol-InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225115. doi: 10.1109/TGRS.2021.3091541. [12] VASILE G and CONGEDO M. Comparative analysis of ICA based incoherent target decompositions for Polsar data[C]. Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 4415–4418. doi: 10.1109/IGARSS46834.2022.9883779. [13] CHEN Zhanye, TANG Shiyang, REN Yi, et al. Curvilinear flight synthetic aperture radar (CF-SAR): Principles, methods, applications, challenges and trends[J]. Remote Sensing, 2022, 14(13): 2983. doi: 10.3390/rs14132983. [14] 仇曉蘭, 焦?jié)衫? 彭凌霄, 等. SARMV3D-1.0: SAR微波視覺三維成像數(shù)據(jù)集[J]. 雷達(dá)學(xué)報, 2021, 10(4): 485–498. doi: 10.12000/JR21112.QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112. [15] 仇曉蘭, 焦?jié)衫? 楊振禮, 等. 微波視覺三維SAR關(guān)鍵技術(shù)及實驗系統(tǒng)初步進(jìn)展[J]. 雷達(dá)學(xué)報, 2022, 11(1): 1–19. doi: 10.12000/JR22027.QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027. [16] WANG Mou, WEI Shunjun, LIANG Jiadian, et al. TPSSI-net: Fast and enhanced two-path iterative network for 3D SAR sparse imaging[J]. IEEE Transactions on Image Processing, 2021, 30: 7317–7332. doi: 10.1109/TIP.2021.3104168. [17] WANG Mou, WEI Shunjun, LIANG Jiadian, et al. RMIST-net: Joint range migration and sparse reconstruction network for 3-D MmW imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205117. doi: 10.1109/TGRS.2021.3068405. [18] WEI Shunjun, LIANG Jiadian, WANG Mou, et al. AF-AMPNet: A deep learning approach for sparse aperture ISAR imaging and autofocusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5206514. doi: 10.1109/TGRS.2021.3073123. [19] WU Ke, JIN Guowang, XIONG Xin, et al. Fast SAR image simulation based on echo matrix cell algorithm including multiple scattering[J]. Remote Sensing, 2023, 15(14): 3637. doi: 10.3390/rs15143637. [20] FRANCESCHETTI G, IODICE A, RICCIO D, et al. SAR raw signal simulation for urban structures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 1986–1995. doi: 10.1109/TGRS.2003.814626. [21] MARGARIT G, MALLORQUI J J, RIUS J M, et al. On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets, to vessel classification studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3517–3526. doi: 10.1109/TGRS.2006.881120. [22] XU Feng and JIN Yaqiu. Imaging simulation of polarimetric SAR for a comprehensive terrain scene using the mapping and projection algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3219–3234. doi: 10.1109/TGRS.2006.879544. [23] AUER S, BALZ T, BECKER S, et al. 3D SAR simulation of urban areas based on detailed building models[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(12): 1373–1384. doi: 10.14358/PERS.76.12.1373. [24] AUER S, HINZ S, and BAMLER R. Ray-tracing simulation techniques for understanding high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1445–1456. doi: 10.1109/TGRS.2009.2029339. [25] BALZ T and STILLA U. Hybrid GPU-based single- and double-bounce SAR simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10): 3519–3529. doi: 10.1109/TGRS.2009.2022326. [26] BALZ T, HAMMER H, and AUER S. Potentials and limitations of SAR image simulators – A comparative study of three simulation approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101: 102–109. doi: 10.1016/j.isprsjprs.2014.12.008. [27] CHEN Qi, YU Anxi, SUN Zaoyu, et al. A multi-mode space-borne SAR simulator based on SBRAS[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 4567–4570. doi: 10.1109/IGARSS.2012.6350453. [28] MEI Dengkui, REN Xiaodong, LE Xuan, et al. Ionospheric tomography: A compressed sensing technique based on dictionary learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5800410. doi: 10.1109/TGRS.2023.3252041. [29] JIAO Runzhi, DENG Jia, WANG Chuxin, et al. A dual-frequency SAR tomography method with fewer flights for urban building reconstruction[J]. IEEE Sensors Journal, 2023, 23(17): 19483–19496. doi: 10.1109/JSEN.2023.3269603. [30] CHEN Zhiyang, HU Cheng, DONG Xichao, et al. Coherence-based geosynchronous SAR tomography employing formation flying: System design and performance analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7165–7179. doi: 10.1109/TGRS.2021.3056209. [31] 李冶. 雷達(dá)目標(biāo)高頻散射特性分析及其識別應(yīng)用研究[D]. [碩士論文], 武漢大學(xué), 2020. doi: 10.27379/d.cnki.gwhdu.2020.001310.LI Ye. Analysis of high frequency scattering characteristics of radar targets and research on its recognition application[D]. [Master dissertation], Wuhan University, 2020. doi: 10.27379/d.cnki.gwhdu.2020.001310. [32] 王瑤瑤. 低速小型無人機(jī)氣動特性和RCS計算分析[D]. [碩士論文], 哈爾濱工程大學(xué), 2016.WANG Yaoyao. Low speed small UAVs aerodynamic characteristics and RCS computing analysis[D]. [Master dissertation], Harbin Engineering University, 2016. [33] NIU Shengren, QIU Xiaolan, PENG Lingxiao, et al. Parameter prediction method of SAR target simulation based on convolutional neural networks[C]. Proceedings of the 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018: 1–5. [34] AUER S J. 3D synthetic aperture radar simulation for interpreting complex urban reflection scenarios[D]. [Ph. D. dissertation], Technische Universit?t München, 2011: 126. [35] JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013. [36] 項德良. SAR圖像相似度評估技術(shù)研究[D]. [碩士論文], 國防科學(xué)技術(shù)大學(xué), 2012.XIANG Deliang. Research on the evaluation techniques of similarity measure in SAR images[D]. [Master dissertation], National University of Defense Technology, 2012. [37] LIU Wenkang, BUDILLON A, PASCAZIO V, et al. Performance improvement for SAR tomography based on local plane model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2298–2310. doi: 10.1109/JSTARS.2022.3151725. -