一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

3DSARBuSim 1.0:人造建筑高分辨星載SAR三維成像仿真數(shù)據(jù)集

焦?jié)欀?/a>,  鄧嘉 韓亞權(quán) 黃海風(fēng) 王青松 賴濤 王小青

焦?jié)欀? 鄧嘉, 韓亞權(quán), 黃海風(fēng), 王青松, 賴濤, 王小青. 3DSARBuSim 1.0:人造建筑高分辨星載SAR三維成像仿真數(shù)據(jù)集[J]. 電子與信息學(xué)報, 2024, 46(7): 2681-2693. doi: 10.11999/JEIT230882
引用本文: 焦?jié)欀? 鄧嘉, 韓亞權(quán), 黃海風(fēng), 王青松, 賴濤, 王小青. 3DSARBuSim 1.0:人造建筑高分辨星載SAR三維成像仿真數(shù)據(jù)集[J]. 電子與信息學(xué)報, 2024, 46(7): 2681-2693. doi: 10.11999/JEIT230882
JIAO Runzhi, DENG Jia, HAN Yaquan, HUANG Haifeng, WANG Qingsong, LAI Tao, WANG Xiaoqing. 3DSARBuSim 1.0: High-Resolution Space Borne SAR 3D Imaging Simulation Dataset of Man-Made Buildings[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2681-2693. doi: 10.11999/JEIT230882
Citation: JIAO Runzhi, DENG Jia, HAN Yaquan, HUANG Haifeng, WANG Qingsong, LAI Tao, WANG Xiaoqing. 3DSARBuSim 1.0: High-Resolution Space Borne SAR 3D Imaging Simulation Dataset of Man-Made Buildings[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2681-2693. doi: 10.11999/JEIT230882

3DSARBuSim 1.0:人造建筑高分辨星載SAR三維成像仿真數(shù)據(jù)集

doi: 10.11999/JEIT230882
基金項目: 國家自然科學(xué)基金(62071499, 62273365)
詳細(xì)信息
    作者簡介:

    焦?jié)欀耗校┦可?,研究方向為層析合成孔徑雷達(dá)技術(shù)等

    鄧嘉:男,碩士生,研究方向為計算機(jī)圖像模擬技術(shù)等

    韓亞權(quán):男,博士生,研究方向為層析合成孔徑雷達(dá)成像技術(shù)等

    黃海風(fēng):男,教授,主要研究方向為空間電子和智能感知領(lǐng)域的基礎(chǔ)理論和關(guān)鍵技術(shù),包括智慧遙感、測繪、海洋、監(jiān)視、地質(zhì)災(zāi)害等

    王青松:男,副教授,研究方向為遙感圖像精化處理、智能視覺導(dǎo)航、協(xié)同探測感知與信息融合等

    賴濤:男,副教授,研究方向為SAR系統(tǒng)設(shè)計與信息處理、MIMO成像雷達(dá)系統(tǒng)設(shè)計與信息處理等

    王小青:男,教授,研究方向為雷達(dá)海洋遙感、農(nóng)業(yè)遙感、雷達(dá)信號處理等

    通訊作者:

    黃海風(fēng) huanghaifeng@mail.sysu.edu.cn

  • 中圖分類號: TN918

3DSARBuSim 1.0: High-Resolution Space Borne SAR 3D Imaging Simulation Dataset of Man-Made Buildings

Funds: The National Natural Science Foundation of China (62071499, 62273365)
  • 摘要: 層析合成孔徑雷達(dá)(Tomographic Synthetic Aperture Radar, TomoSAR)成像技術(shù)可有效解決陡峭地形疊掩恢復(fù)難題,因此成為城市測繪技術(shù)的研究熱點之一?;诠_數(shù)據(jù)集的評估是TomoSAR算法研究與系統(tǒng)論證的必要過程,但目前存在的公開數(shù)據(jù)集缺乏相應(yīng)的地物模型真值,無法對算法進(jìn)行定量驗證。為解決這一問題,并進(jìn)一步推動TomoSAR技術(shù)的發(fā)展,該文首先提出一種基于射線追蹤的先進(jìn)星載雷達(dá)模擬器(Ray Tracing Space Borne Radar Advanced Simulator, RT-SBRAS),相較過往方法,該模擬器可快速穩(wěn)定地模擬復(fù)雜建筑物星載SAR圖像?;诖?,構(gòu)建了人造建筑物高分辨SAR三維成像仿真(3D SAR Building Simulation, 3DSARBuSim)數(shù)據(jù)集的1.0版本,其中包含8個典型建筑物場景的雙頻段多航過全鏈路仿真數(shù)據(jù)。最后給出正交匹配追蹤(Orthogonal Matching Pursuit, OMP)算法和雙頻OMP算法在所提數(shù)據(jù)集上的驗證實驗,該數(shù)據(jù)集可對算法進(jìn)行清晰、準(zhǔn)確的定量比較。
  • 圖  1  RT-SBRAS系統(tǒng)結(jié)構(gòu)框圖

    圖  2  多次反射示意圖

    圖  3  射線追蹤示意圖

    圖  4  二維成像驗證模型

    圖  5  場景模型局部放大

    圖  6  各方法仿真結(jié)果與實測數(shù)據(jù)對比

    圖  7  各方法仿真結(jié)果與實測數(shù)據(jù)間相似度指標(biāo)圖

    圖  8  互相關(guān)系數(shù)圖與干涉圖

    圖  9  點目標(biāo)三維模型與其場景建模散射特性計算結(jié)果

    圖  10  雙波段點目標(biāo)圖像

    圖  12  波段點目標(biāo)層析成像結(jié)果

    圖  11  航過及其采樣示意圖

    圖  13  不同方法獲得的其他仿真數(shù)據(jù)三維成像結(jié)果的3D點云

    圖  14  埃菲爾鐵塔的各波段所選航過數(shù)據(jù)重建結(jié)果點云

    圖  15  埃菲爾鐵塔的各波段所選航過數(shù)據(jù)重建結(jié)果點云與場景建模結(jié)果點云配準(zhǔn)圖

    表  1  分布式干涉SAR衛(wèi)星軌道六根數(shù)

    序號 參數(shù)
    半長軸a(km) 偏心率e 軌道傾角i(°) 升交點赤經(jīng)$\varOmega $(°) 近地點幅角ω(°) 真近點角f(°)
    1 6893.38 0.00135 97.4478 295.305 66.7208 76.6798
    30 6893.38 0.00138 97.4535 295.314 72.2645 71.1363
    下載: 導(dǎo)出CSV

    表  2  3DSARBUsim 1.0數(shù)據(jù)集衛(wèi)星雷達(dá)載荷仿真參數(shù)

    參數(shù)數(shù)值
    工作頻率1 (GHz)9.6
    工作頻率2 (GHz)7.2
    下視角 (°)36.52
    脈沖重復(fù)頻率 (Hz)3785
    接收信號采樣頻率 (MHz)400
    發(fā)射信號帶寬 (MHz)300
    發(fā)射信號峰值功率 (W)7680
    發(fā)射信號脈寬 (s)4.7×10–5
    圖像方位向采樣頻率 (Hz)7570
    理論方位分辨率 (m)1.01
    理論斜距分辨率 (m)0.50
    下載: 導(dǎo)出CSV

    表  3  數(shù)據(jù)集文件構(gòu)成

    序號文件后綴說明
    1*.skp各建筑物原始三維模型文件
    2*BulidingPc[Name].dat各建筑物場景構(gòu)建結(jié)果點云文件
    3*BulidingSLC[Name].dat各建筑物雙頻段SLC數(shù)據(jù),float32格式,實部虛部交替存放
    4*Parameters.dat實現(xiàn)三維成像所需要的詳盡參數(shù),包括衛(wèi)星軌道數(shù)據(jù)、天線相位中心數(shù)據(jù)、雷達(dá)系統(tǒng)參數(shù)等
    5*readme.pdf說明文件,給出數(shù)據(jù)集中文件數(shù)據(jù)存儲地址、字節(jié)數(shù)
    下載: 導(dǎo)出CSV

    表  4  3DSARBuSim 1.0建筑物選擇

    英國倫敦塔橋 泰國泰姬陵 俄羅斯圣巴西勒大教堂 悉尼歌劇院 希臘萬神殿 中國黃鶴樓 法國埃菲爾鐵塔 法國巴黎圣母院
    下載: 導(dǎo)出CSV

    表  5  3DSARBuSim 1.0建筑物參考衛(wèi)星仿真SAR圖像

    泰姬陵 倫敦塔橋 希臘萬神殿 巴黎圣母院 悉尼歌劇院 圣巴西勒大教堂 黃鶴樓 埃菲爾鐵塔
    下載: 導(dǎo)出CSV

    表  6  算法恢復(fù)雙頻、單頻數(shù)據(jù)三維場景重建完整性和精確度

    指標(biāo) 波段 倫敦橋 悉尼
    歌劇院
    巴黎
    圣母院
    泰姬陵 黃鶴樓 埃菲爾鐵塔 圣巴西勒大教堂 希臘
    萬神殿
    完整性(m) C 44.6201 5.1023 16.1274 10.8159 2.1040 6.6170 7.9663 5.6728
    X 64.3135 6.5311 14.9781 20.7736 2.4556 17.6414 6.5897 5.6028
    雙頻 4.3683 4.1709 13.0377 10.6187 2.6998 9.5862 4.5173 3.1208
    精確度(m) C 20.3231 7.1584 2.3680 2.6077 11.2004 4.2615 2.0330 6.2672
    X 28.3335 15.0973 4.2324 3.8414 9.5589 4.6720 2.1939 6.0266
    雙頻 3.5853 3.2969 5.4178 3.4100 8.3067 4.0461 2.3919 5.3200
    下載: 導(dǎo)出CSV
  • [1] KNAELL K K and CARDILLO G P. Radar tomography for the generation of three-dimensional images[J]. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(2): 54–60. doi: 10.1049/ip-rsn:19951791.
    [2] WEBB J L H and MUNSON D C. Radar imaging of three-dimensional surfaces using limited data[C]. Proceedings of the International Conference on Image Processing, Washington, USA, 1995: 136–139. doi: 10.1109/ICIP.1995.529058.
    [3] REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873.
    [4] FORNARO G, LOMBARDINI F, and SERAFINO F. Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 702–714. doi: 10.1109/TGRS.2005.843567.
    [5] MEGLIO F, PANARIELLO G, and SCHIRINZI G. Three dimensional SAR image focusing from non-uniform samples[C]. Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 528–531. doi: 10.1109/IGARSS.2007.4422847.
    [6] LOMBARDINI F and REIGBER A. Adaptive spectral estimation for multibaseline SAR tomography with airborne L-band data[C]. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 2014–2016. doi: 10.1109/IGARSS.2003.1294324.
    [7] GINI F and LOMBARDINI F. Multibaseline cross-track SAR interferometry: A signal processing perspective[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 71–93. doi: 10.1109/MAES.2005.1499278.
    [8] GUILLASO S and REIGBER A. Polarimetric SAR tomography[C]. Proceedings of the 2nd International Workshop POLINSAR 2005, Frascati, Italy, 2005: 4.
    [9] BUDILLON A, EVANGELISTA A, and SCHIRINZI G. SAR tomography from sparse samples[C]. Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: 865–868. doi: 10.1109/IGARSS.2009.5417514.
    [10] HOMER J, LONGSTAFF I D, SHE Z, et al. High resolution 3-D imaging via multi-pass SAR[J]. IEE Proceedings - Radar, Sonar and Navigation, 2002, 149(1): 45–50. doi: 10.1049/ip-rsn:20020059.
    [11] SUN Xiaofan, WANG Bingnan, XIANG Maosheng, et al. Machine-learning inversion of forest vertical structure based on 2-D-SGVBVoG model for P-band Pol-InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225115. doi: 10.1109/TGRS.2021.3091541.
    [12] VASILE G and CONGEDO M. Comparative analysis of ICA based incoherent target decompositions for Polsar data[C]. Proceedings of 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 4415–4418. doi: 10.1109/IGARSS46834.2022.9883779.
    [13] CHEN Zhanye, TANG Shiyang, REN Yi, et al. Curvilinear flight synthetic aperture radar (CF-SAR): Principles, methods, applications, challenges and trends[J]. Remote Sensing, 2022, 14(13): 2983. doi: 10.3390/rs14132983.
    [14] 仇曉蘭, 焦?jié)衫? 彭凌霄, 等. SARMV3D-1.0: SAR微波視覺三維成像數(shù)據(jù)集[J]. 雷達(dá)學(xué)報, 2021, 10(4): 485–498. doi: 10.12000/JR21112.

    QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112.
    [15] 仇曉蘭, 焦?jié)衫? 楊振禮, 等. 微波視覺三維SAR關(guān)鍵技術(shù)及實驗系統(tǒng)初步進(jìn)展[J]. 雷達(dá)學(xué)報, 2022, 11(1): 1–19. doi: 10.12000/JR22027.

    QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027.
    [16] WANG Mou, WEI Shunjun, LIANG Jiadian, et al. TPSSI-net: Fast and enhanced two-path iterative network for 3D SAR sparse imaging[J]. IEEE Transactions on Image Processing, 2021, 30: 7317–7332. doi: 10.1109/TIP.2021.3104168.
    [17] WANG Mou, WEI Shunjun, LIANG Jiadian, et al. RMIST-net: Joint range migration and sparse reconstruction network for 3-D MmW imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205117. doi: 10.1109/TGRS.2021.3068405.
    [18] WEI Shunjun, LIANG Jiadian, WANG Mou, et al. AF-AMPNet: A deep learning approach for sparse aperture ISAR imaging and autofocusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5206514. doi: 10.1109/TGRS.2021.3073123.
    [19] WU Ke, JIN Guowang, XIONG Xin, et al. Fast SAR image simulation based on echo matrix cell algorithm including multiple scattering[J]. Remote Sensing, 2023, 15(14): 3637. doi: 10.3390/rs15143637.
    [20] FRANCESCHETTI G, IODICE A, RICCIO D, et al. SAR raw signal simulation for urban structures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 1986–1995. doi: 10.1109/TGRS.2003.814626.
    [21] MARGARIT G, MALLORQUI J J, RIUS J M, et al. On the usage of GRECOSAR, an orbital polarimetric SAR simulator of complex targets, to vessel classification studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3517–3526. doi: 10.1109/TGRS.2006.881120.
    [22] XU Feng and JIN Yaqiu. Imaging simulation of polarimetric SAR for a comprehensive terrain scene using the mapping and projection algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3219–3234. doi: 10.1109/TGRS.2006.879544.
    [23] AUER S, BALZ T, BECKER S, et al. 3D SAR simulation of urban areas based on detailed building models[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(12): 1373–1384. doi: 10.14358/PERS.76.12.1373.
    [24] AUER S, HINZ S, and BAMLER R. Ray-tracing simulation techniques for understanding high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1445–1456. doi: 10.1109/TGRS.2009.2029339.
    [25] BALZ T and STILLA U. Hybrid GPU-based single- and double-bounce SAR simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10): 3519–3529. doi: 10.1109/TGRS.2009.2022326.
    [26] BALZ T, HAMMER H, and AUER S. Potentials and limitations of SAR image simulators – A comparative study of three simulation approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101: 102–109. doi: 10.1016/j.isprsjprs.2014.12.008.
    [27] CHEN Qi, YU Anxi, SUN Zaoyu, et al. A multi-mode space-borne SAR simulator based on SBRAS[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 4567–4570. doi: 10.1109/IGARSS.2012.6350453.
    [28] MEI Dengkui, REN Xiaodong, LE Xuan, et al. Ionospheric tomography: A compressed sensing technique based on dictionary learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5800410. doi: 10.1109/TGRS.2023.3252041.
    [29] JIAO Runzhi, DENG Jia, WANG Chuxin, et al. A dual-frequency SAR tomography method with fewer flights for urban building reconstruction[J]. IEEE Sensors Journal, 2023, 23(17): 19483–19496. doi: 10.1109/JSEN.2023.3269603.
    [30] CHEN Zhiyang, HU Cheng, DONG Xichao, et al. Coherence-based geosynchronous SAR tomography employing formation flying: System design and performance analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7165–7179. doi: 10.1109/TGRS.2021.3056209.
    [31] 李冶. 雷達(dá)目標(biāo)高頻散射特性分析及其識別應(yīng)用研究[D]. [碩士論文], 武漢大學(xué), 2020. doi: 10.27379/d.cnki.gwhdu.2020.001310.

    LI Ye. Analysis of high frequency scattering characteristics of radar targets and research on its recognition application[D]. [Master dissertation], Wuhan University, 2020. doi: 10.27379/d.cnki.gwhdu.2020.001310.
    [32] 王瑤瑤. 低速小型無人機(jī)氣動特性和RCS計算分析[D]. [碩士論文], 哈爾濱工程大學(xué), 2016.

    WANG Yaoyao. Low speed small UAVs aerodynamic characteristics and RCS computing analysis[D]. [Master dissertation], Harbin Engineering University, 2016.
    [33] NIU Shengren, QIU Xiaolan, PENG Lingxiao, et al. Parameter prediction method of SAR target simulation based on convolutional neural networks[C]. Proceedings of the 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018: 1–5.
    [34] AUER S J. 3D synthetic aperture radar simulation for interpreting complex urban reflection scenarios[D]. [Ph. D. dissertation], Technische Universit?t München, 2011: 126.
    [35] JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013.
    [36] 項德良. SAR圖像相似度評估技術(shù)研究[D]. [碩士論文], 國防科學(xué)技術(shù)大學(xué), 2012.

    XIANG Deliang. Research on the evaluation techniques of similarity measure in SAR images[D]. [Master dissertation], National University of Defense Technology, 2012.
    [37] LIU Wenkang, BUDILLON A, PASCAZIO V, et al. Performance improvement for SAR tomography based on local plane model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2298–2310. doi: 10.1109/JSTARS.2022.3151725.
  • 加載中
圖(15) / 表(6)
計量
  • 文章訪問數(shù):  732
  • HTML全文瀏覽量:  370
  • PDF下載量:  105
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2023-08-11
  • 修回日期:  2024-04-08
  • 網(wǎng)絡(luò)出版日期:  2024-04-26
  • 刊出日期:  2024-07-29

目錄

    /

    返回文章
    返回