一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

無人機輔助的非正交多址反向散射通信系統(tǒng)max-min速率優(yōu)化算法

王正強 胡揚 樊自甫 萬曉榆 徐勇軍 多濱

王正強, 胡揚, 樊自甫, 萬曉榆, 徐勇軍, 多濱. 無人機輔助的非正交多址反向散射通信系統(tǒng)max-min速率優(yōu)化算法[J]. 電子與信息學報, 2023, 45(7): 2358-2365. doi: 10.11999/JEIT221210
引用本文: 王正強, 胡揚, 樊自甫, 萬曉榆, 徐勇軍, 多濱. 無人機輔助的非正交多址反向散射通信系統(tǒng)max-min速率優(yōu)化算法[J]. 電子與信息學報, 2023, 45(7): 2358-2365. doi: 10.11999/JEIT221210
WANG Zhengqiang, HU Yang, FAN Zifu, WAN Xiaoyu, XU Yongjun, DUO bin. Max-min Rate Optimization Algorithm for Non-Orthogonal Multiple Access Backscatter Communication System Assisted by Unmanned Aerial Vehicles[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2358-2365. doi: 10.11999/JEIT221210
Citation: WANG Zhengqiang, HU Yang, FAN Zifu, WAN Xiaoyu, XU Yongjun, DUO bin. Max-min Rate Optimization Algorithm for Non-Orthogonal Multiple Access Backscatter Communication System Assisted by Unmanned Aerial Vehicles[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2358-2365. doi: 10.11999/JEIT221210

無人機輔助的非正交多址反向散射通信系統(tǒng)max-min速率優(yōu)化算法

doi: 10.11999/JEIT221210
基金項目: 國家自然科學基金(61701064, 62271094),四川省區(qū)域創(chuàng)新合作項目(2022YFQ0017),重慶市教委科學技術(shù)研究項目(KJZD-K202200501),重慶市博士后研究項目(2021XM3082),中國博士后科學基金(2022MD723725)
詳細信息
    作者簡介:

    王正強:男,副教授,博士生導(dǎo)師,研究方向為無人機通信

    胡揚:男,碩士生,研究方向為反向散射通信

    樊自甫:男,教授,碩士生導(dǎo)師,研究方向為下一代無線通信

    萬曉榆:男,教授,博士生導(dǎo)師,研究方向為下一代無線通信

    徐勇軍:男,副教授,博士生導(dǎo)師,研究方向為反向散射通信

    多濱:男,教授,碩士生導(dǎo)師,研究方向為無人機通信

    通訊作者:

    王正強 wangzq@cqupt.edu.cn

  • 中圖分類號: TN929.5

Max-min Rate Optimization Algorithm for Non-Orthogonal Multiple Access Backscatter Communication System Assisted by Unmanned Aerial Vehicles

Funds: The National Natural Science Foundation of China (61701064,62271094), The Sichuan Regional Innovation Cooperation Project (2022YFQ0017), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200501), Chongqing Postdoctoral Research Project (2021XM3082), China Postdoctoral Science Foundation (2022MD723725)
  • 摘要: 無人機(UAV)、非正交多址(NOMA)和反向散射通信(BC)相結(jié)合,可以滿足熱點地區(qū)高容量需求,提高通信質(zhì)量。該文提出一種無人機輔助的NOMA反向散射通信系統(tǒng)最小速率最大化資源分配算法??紤]無人機發(fā)射功率、能量收集、反射系數(shù)、傳輸速率以及連續(xù)干擾消除(SIC)解碼順序約束,建立基于系統(tǒng)最小速率最大化的資源分配模型。首先利用塊坐標下降將原問題分解為無人機發(fā)射功率優(yōu)化、反射系數(shù)優(yōu)化和無人機位置與SIC解碼順序聯(lián)合優(yōu)化3個子問題,然后使用反證法給出無人機最優(yōu)發(fā)射功率,再用變量替換法和連續(xù)凸逼近將剩余子問題進一步轉(zhuǎn)化為凸優(yōu)化問題進行求解。仿真結(jié)果表明,所提算法在系統(tǒng)和速率與用戶公平性之間具有較好折中。
  • 圖  1  系統(tǒng)模型

    圖  2  本文方案迭代圖

    圖  3  不同方案下系統(tǒng)最小速率、和速率和公平指數(shù)與無人機最大發(fā)射功率${P_{\max }}$之間的關(guān)系

    圖  4  不同方案下系統(tǒng)最小速率、和速率和公平指數(shù)與無人機飛行高度$H$之間的關(guān)系

    圖  5  不同方案下系統(tǒng)最小速率、和速率和公平指數(shù)與BD數(shù)目之間的關(guān)系

    算法1 最小速率最大化資源分配算法
     初始化:max-min速率$R_{\max - \min }^0$,內(nèi)層迭代次數(shù)$ l = 0 $,外層迭
     代次數(shù)$ t = 0 $,懲罰參數(shù)$\mu = {\mu _0}$,步長$\gamma = {\gamma _0}$;無人機最大發(fā)射
     功率$ {P_{\max }} $,$ {{\mathbf{q}}^0},{{\mathbf{A}}^0},{{\mathbf{B}}^0},{{\mathbf{C}}^0},{{\mathbf{U}}^0},{{\mathbf{G}}^0} $;max-min速率收斂精度
     $ {\varsigma _1} $,懲罰收斂精度$ {\varsigma _2} $,外層最大迭代次數(shù)為$ {T_{\max }} $;
     (1) repeat
     (2)  repeat
     (3)    根據(jù)給定的$ {{\mathbf{q}}^l} $和$ {{\mathbf{A}}^l} $利用凸優(yōu)化內(nèi)點法求解問題式(9)得
          到反射系數(shù)$ {{\mathbf{R}}^*} $;
     (4)    根據(jù)$ {{\mathbf{R}}^*},{{\mathbf{B}}^l},{{\mathbf{C}}^l},{{\mathbf{U}}^l},{{\mathbf{G}}^l} $利用凸優(yōu)化內(nèi)點法求解問題
          式(22)得到無人機位置$ {{\mathbf{q}}^*} $和SIC解碼順序$ {{\mathbf{A}}^*} $;
     (5)    更新$ l = l + 1 $;
     (6)   until $ \left| {R_{\max - \min }^{l + 1} - R_{\max - \min }^l} \right| < {\varsigma _1} $;
     (7)    if $ \max \left\{ {{\varphi _{nm}}} \right\} \gt {\varsigma _2} $
     (8)     更新$ \mu = \gamma \mu $;
     (9)    else
     (10)     更新$ t = t + 1 $;
     (11)    end if
     (12) until $t \ge {T_{\max } }$。
    下載: 導(dǎo)出CSV
  • [1] AL-FUQAHA A, GUIZANI M, MOHAMMADI M, et al. Internet of things: A survey on enabling technologies, protocols, and applications[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2347–2376. doi: 10.1109/COMST.2015.2444095
    [2] VAN HUYNH N, HOANG D T, LU Xiao, et al. Ambient backscatter communications: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2889–2922. doi: 10.1109/COMST.2018.2841964
    [3] BOYER C and ROY S. Backscatter communication and RFID: Coding, energy, and MIMO analysis[J]. IEEE Transactions on Communications, 2014, 62(3): 770–785. doi: 10.1109/TCOMM.2013.120713.130417
    [4] WANG Zhe, DUAN Lingjie, and ZHANG Rui. Adaptive deployment for UAV-aided communication networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4531–4543. doi: 10.1109/TWC.2019.2926279
    [5] WANG Zhengqiang, CHENG Qu, FAN Zifu, et al. A review of resource allocation studies for non-orthogonal multiple access system[J]. Telecommunication Science, 2018, 34(8): 136–146. doi: 10.11959/j.issn.1000-0801.2018236
    [6] XU Yongjun and GUI Guan. Optimal resource allocation for wireless powered multi-carrier backscatter communication networks[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1191–1195. doi: 10.1109/LWC.2020.2985010
    [7] KHAN W U, LI Xingwang, ZENG Ming, et al. Backscatter-enabled NOMA for future 6G systems: A new optimization framework under imperfect SIC[J]. IEEE Communications Letters, 2021, 25(5): 1669–1672. doi: 10.1109/LCOMM.2021.3052936
    [8] XU Yongjun, QIN Zhijin, GUI Guan, et al. Energy efficiency maximization in NOMA enabled backscatter communications with QoS guarantee[J]. IEEE Wireless Communications Letters, 2021, 10(2): 353–357. doi: 10.1109/LWC.2020.3031042
    [9] YANG Gang, DAI Rao, and LIANG Yingchang. Energy-efficient UAV backscatter communication with joint trajectory design and resource optimization[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 926–941. doi: 10.1109/TWC.2020.3029225
    [10] FARAJZADEH A, ERCETIN O, and YANIKOMEROGLU H. UAV data collection over NOMA backscatter networks: UAV altitude and trajectory optimization[C]. 2019 IEEE International Conference on Communications, Shanghai, China, 2019: 1–7.
    [11] GRANT M and BOYD S. CVX: Matlab software for disciplined convex programming[EB/OL]. http://cvxr.com/cvx, 2020.
    [12] ZHANG Ningbo, WANG Jing, KANG Guixia, et al. Uplink nonorthogonal multiple access in 5G systems[J]. IEEE Communications Letters, 2016, 20(3): 458–461. doi: 10.1109/LCOMM.2016.2521374
    [13] LU Jinhui, WANG Yuntian, LIU Tingting, et al. UAV-enabled uplink non-orthogonal multiple access system: Joint deployment and power control[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10090–10102. doi: 10.1109/TVT.2020.3005732
    [14] VU Q D, NGUYEN K G, and JUNTTI M. Max-min fairness for multicast multigroup multicell transmission under backhaul constraints[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6.
    [15] NGUYEN T M, AJIB W, and ASSI C. A novel cooperative NOMA for designing UAV-assisted wireless backhaul networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(11): 2497–2507. doi: 10.1109/JSAC.2018.2874136
    [16] WANG Zhengqiang, DU Jin, FAN Zifu, et al. Energy efficiency maximization for multi-carrier cooperative non-orthogonal multiple access systems[J]. Digital Signal Processing, 2022, 130: 103725. doi: 10.1016/j.dsp.2022.103725
    [17] LI Dong. Two birds with one stone: Exploiting decode-and-forward relaying for opportunistic ambient backscattering[J]. IEEE Transactions on Communications, 2020, 68(3): 1405–1416. doi: 10.1109/TCOMM.2019.2957490
    [18] CHEN Zhiyong, DING Zhiguo, DAI Xuchu, et al. An optimization perspective of the superiority of NOMA compared to conventional OMA[J]. IEEE Transactions on Signal Processing, 2017, 65(19): 5191–5202. doi: 10.1109/TSP.2017.2725223
    [19] WANG Zhengqiang, WAN Xiaoyu, WEI Xiao, et al. A closed-form power control algorithm in cognitive radio networks based on Nash bargaining solution[C]. The 3rd IEEE International Conference on Computer and Communications, Chengdu, China, 2017: 681–685.
    [20] LI Xingwang, ZHENG Yike, KHAN W U, et al. Physical layer security of cognitive ambient backscatter communications for green Internet-of-Things[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(3): 1066–1076. doi: 10.1109/TGCN.2021.3062060
    [21] ZHANG Yanliang, HE Wenjing, LI Xingwang, et al. Covert communication in downlink NOMA systems with channel uncertainty[J]. IEEE Sensors Journal, 2022, 22(19): 19101–19112. doi: 10.1109/JSEN.2022.3201319
    [22] LI Geng, LIU Huiling, HUANG Gaojian, et al. Effective capacity analysis of reconfigurable intelligent surfaces aided NOMA network[J]. EURASIP Journal on Wireless Communications and Networking, 2021, 2021(1): 198. doi: 10.1186/s13638-021-02070-7
    [23] HUA Meng and WU Qingqing. Throughput maximization for IRS-aided MIMO FD-WPCN with non-linear EH model[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 918–932. doi: 10.1109/JSTSP.2022.3179840
    [24] LI Xingwang, ZHAO Mengle, ZENG Ming, et al. Hardware impaired ambient backscatter NOMA systems: Reliability and security[J]. IEEE Transactions on Communications, 2021, 69(4): 2723–2736. doi: 10.1109/TCOMM.2021.3050503
  • 加載中
圖(5) / 表(1)
計量
  • 文章訪問數(shù):  808
  • HTML全文瀏覽量:  266
  • PDF下載量:  172
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2022-09-16
  • 修回日期:  2023-02-09
  • 網(wǎng)絡(luò)出版日期:  2023-02-11
  • 刊出日期:  2023-07-10

目錄

    /

    返回文章
    返回