無人機輔助的非正交多址反向散射通信系統(tǒng)max-min速率優(yōu)化算法
doi: 10.11999/JEIT221210
-
1.
重慶郵電大學通信與信息工程學院 重慶 400065
-
2.
成都理工大學計算機與網(wǎng)絡(luò)安全學院 成都 610059
Max-min Rate Optimization Algorithm for Non-Orthogonal Multiple Access Backscatter Communication System Assisted by Unmanned Aerial Vehicles
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu 610059, China
-
摘要: 無人機(UAV)、非正交多址(NOMA)和反向散射通信(BC)相結(jié)合,可以滿足熱點地區(qū)高容量需求,提高通信質(zhì)量。該文提出一種無人機輔助的NOMA反向散射通信系統(tǒng)最小速率最大化資源分配算法??紤]無人機發(fā)射功率、能量收集、反射系數(shù)、傳輸速率以及連續(xù)干擾消除(SIC)解碼順序約束,建立基于系統(tǒng)最小速率最大化的資源分配模型。首先利用塊坐標下降將原問題分解為無人機發(fā)射功率優(yōu)化、反射系數(shù)優(yōu)化和無人機位置與SIC解碼順序聯(lián)合優(yōu)化3個子問題,然后使用反證法給出無人機最優(yōu)發(fā)射功率,再用變量替換法和連續(xù)凸逼近將剩余子問題進一步轉(zhuǎn)化為凸優(yōu)化問題進行求解。仿真結(jié)果表明,所提算法在系統(tǒng)和速率與用戶公平性之間具有較好折中。Abstract: The combination of Unmanned Aerial Vehicle (UAV), Non-Orthogonal Multiple Access (NOMA), and Backscatter Communication (BC) can meet the high capacity demand and improve the communication quality in hotspots. A max-min rate optimization algorithm is proposed for UAV-assisted NOMA-based backscatter communication systems. Specifically, a resource allocation model is developed to maximize systems’ minimum rate under the UAV transmit power, energy harvesting, reflection coefficient, transmission rate, and Successive Interference Cancellation (SIC) decoding order constraints. The original problem is divided into three subproblems: UAV transmit power optimization, reflection coefficient optimization, and joint optimization of UAV position and SIC decoding order optimization, which are handled by block coordinated decent method. Then, the UAV’s optimal transmit power optimization subproblem is solved by contradiction. Furthermore, the remaining subproblems are solved by convex optimization with variable substitution and successive convex approximation methods. Finally, the simulation results show that the proposed algorithm has obtained a good tradeoff between the systems’ sum rate and users’ fairness.
-
算法1 最小速率最大化資源分配算法 初始化:max-min速率$R_{\max - \min }^0$,內(nèi)層迭代次數(shù)$ l = 0 $,外層迭
代次數(shù)$ t = 0 $,懲罰參數(shù)$\mu = {\mu _0}$,步長$\gamma = {\gamma _0}$;無人機最大發(fā)射
功率$ {P_{\max }} $,$ {{\mathbf{q}}^0},{{\mathbf{A}}^0},{{\mathbf{B}}^0},{{\mathbf{C}}^0},{{\mathbf{U}}^0},{{\mathbf{G}}^0} $;max-min速率收斂精度
$ {\varsigma _1} $,懲罰收斂精度$ {\varsigma _2} $,外層最大迭代次數(shù)為$ {T_{\max }} $;(1) repeat (2) repeat (3) 根據(jù)給定的$ {{\mathbf{q}}^l} $和$ {{\mathbf{A}}^l} $利用凸優(yōu)化內(nèi)點法求解問題式(9)得
到反射系數(shù)$ {{\mathbf{R}}^*} $;(4) 根據(jù)$ {{\mathbf{R}}^*},{{\mathbf{B}}^l},{{\mathbf{C}}^l},{{\mathbf{U}}^l},{{\mathbf{G}}^l} $利用凸優(yōu)化內(nèi)點法求解問題
式(22)得到無人機位置$ {{\mathbf{q}}^*} $和SIC解碼順序$ {{\mathbf{A}}^*} $;(5) 更新$ l = l + 1 $; (6) until $ \left| {R_{\max - \min }^{l + 1} - R_{\max - \min }^l} \right| < {\varsigma _1} $; (7) if $ \max \left\{ {{\varphi _{nm}}} \right\} \gt {\varsigma _2} $ (8) 更新$ \mu = \gamma \mu $; (9) else (10) 更新$ t = t + 1 $; (11) end if (12) until $t \ge {T_{\max } }$。 下載: 導(dǎo)出CSV
-
[1] AL-FUQAHA A, GUIZANI M, MOHAMMADI M, et al. Internet of things: A survey on enabling technologies, protocols, and applications[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2347–2376. doi: 10.1109/COMST.2015.2444095 [2] VAN HUYNH N, HOANG D T, LU Xiao, et al. Ambient backscatter communications: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2889–2922. doi: 10.1109/COMST.2018.2841964 [3] BOYER C and ROY S. Backscatter communication and RFID: Coding, energy, and MIMO analysis[J]. IEEE Transactions on Communications, 2014, 62(3): 770–785. doi: 10.1109/TCOMM.2013.120713.130417 [4] WANG Zhe, DUAN Lingjie, and ZHANG Rui. Adaptive deployment for UAV-aided communication networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4531–4543. doi: 10.1109/TWC.2019.2926279 [5] WANG Zhengqiang, CHENG Qu, FAN Zifu, et al. A review of resource allocation studies for non-orthogonal multiple access system[J]. Telecommunication Science, 2018, 34(8): 136–146. doi: 10.11959/j.issn.1000-0801.2018236 [6] XU Yongjun and GUI Guan. Optimal resource allocation for wireless powered multi-carrier backscatter communication networks[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1191–1195. doi: 10.1109/LWC.2020.2985010 [7] KHAN W U, LI Xingwang, ZENG Ming, et al. Backscatter-enabled NOMA for future 6G systems: A new optimization framework under imperfect SIC[J]. IEEE Communications Letters, 2021, 25(5): 1669–1672. doi: 10.1109/LCOMM.2021.3052936 [8] XU Yongjun, QIN Zhijin, GUI Guan, et al. Energy efficiency maximization in NOMA enabled backscatter communications with QoS guarantee[J]. IEEE Wireless Communications Letters, 2021, 10(2): 353–357. doi: 10.1109/LWC.2020.3031042 [9] YANG Gang, DAI Rao, and LIANG Yingchang. Energy-efficient UAV backscatter communication with joint trajectory design and resource optimization[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 926–941. doi: 10.1109/TWC.2020.3029225 [10] FARAJZADEH A, ERCETIN O, and YANIKOMEROGLU H. UAV data collection over NOMA backscatter networks: UAV altitude and trajectory optimization[C]. 2019 IEEE International Conference on Communications, Shanghai, China, 2019: 1–7. [11] GRANT M and BOYD S. CVX: Matlab software for disciplined convex programming[EB/OL]. http://cvxr.com/cvx, 2020. [12] ZHANG Ningbo, WANG Jing, KANG Guixia, et al. Uplink nonorthogonal multiple access in 5G systems[J]. IEEE Communications Letters, 2016, 20(3): 458–461. doi: 10.1109/LCOMM.2016.2521374 [13] LU Jinhui, WANG Yuntian, LIU Tingting, et al. UAV-enabled uplink non-orthogonal multiple access system: Joint deployment and power control[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10090–10102. doi: 10.1109/TVT.2020.3005732 [14] VU Q D, NGUYEN K G, and JUNTTI M. Max-min fairness for multicast multigroup multicell transmission under backhaul constraints[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6. [15] NGUYEN T M, AJIB W, and ASSI C. A novel cooperative NOMA for designing UAV-assisted wireless backhaul networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(11): 2497–2507. doi: 10.1109/JSAC.2018.2874136 [16] WANG Zhengqiang, DU Jin, FAN Zifu, et al. Energy efficiency maximization for multi-carrier cooperative non-orthogonal multiple access systems[J]. Digital Signal Processing, 2022, 130: 103725. doi: 10.1016/j.dsp.2022.103725 [17] LI Dong. Two birds with one stone: Exploiting decode-and-forward relaying for opportunistic ambient backscattering[J]. IEEE Transactions on Communications, 2020, 68(3): 1405–1416. doi: 10.1109/TCOMM.2019.2957490 [18] CHEN Zhiyong, DING Zhiguo, DAI Xuchu, et al. An optimization perspective of the superiority of NOMA compared to conventional OMA[J]. IEEE Transactions on Signal Processing, 2017, 65(19): 5191–5202. doi: 10.1109/TSP.2017.2725223 [19] WANG Zhengqiang, WAN Xiaoyu, WEI Xiao, et al. A closed-form power control algorithm in cognitive radio networks based on Nash bargaining solution[C]. The 3rd IEEE International Conference on Computer and Communications, Chengdu, China, 2017: 681–685. [20] LI Xingwang, ZHENG Yike, KHAN W U, et al. Physical layer security of cognitive ambient backscatter communications for green Internet-of-Things[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(3): 1066–1076. doi: 10.1109/TGCN.2021.3062060 [21] ZHANG Yanliang, HE Wenjing, LI Xingwang, et al. Covert communication in downlink NOMA systems with channel uncertainty[J]. IEEE Sensors Journal, 2022, 22(19): 19101–19112. doi: 10.1109/JSEN.2022.3201319 [22] LI Geng, LIU Huiling, HUANG Gaojian, et al. Effective capacity analysis of reconfigurable intelligent surfaces aided NOMA network[J]. EURASIP Journal on Wireless Communications and Networking, 2021, 2021(1): 198. doi: 10.1186/s13638-021-02070-7 [23] HUA Meng and WU Qingqing. Throughput maximization for IRS-aided MIMO FD-WPCN with non-linear EH model[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 918–932. doi: 10.1109/JSTSP.2022.3179840 [24] LI Xingwang, ZHAO Mengle, ZENG Ming, et al. Hardware impaired ambient backscatter NOMA systems: Reliability and security[J]. IEEE Transactions on Communications, 2021, 69(4): 2723–2736. doi: 10.1109/TCOMM.2021.3050503 -