智能反射面輔助及人工噪聲增強的無線隱蔽通信
doi: 10.11999/JEIT211618
-
1.
安徽農(nóng)業(yè)大學(xué)信息與計算機學(xué)院 合肥 230036
-
2.
阜陽師范大學(xué)物理與電子工程學(xué)院 阜陽 236037
-
3.
澳門大學(xué)智慧城市物聯(lián)網(wǎng)國家重點實驗室 澳門 999078
-
4.
中國科學(xué)院合肥物質(zhì)科學(xué)研究院 合肥 230031
Wireless Covert Communications Based on Intelligent Reflecting Surface Aided and Artificial Noise Enhanced
-
1.
School of Information and Computer, Anhui Agricultural University, Hefei 230036, China
-
2.
School of Physics and Electronic Engineering, Fuyang Normal University, Fuyang 236037, China
-
3.
State Key Laboratory of Internet of Things for Smart City, University of Macau, Macao 999078, China
-
4.
Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
-
摘要: 該文考慮一種智能反射面(IRS)輔助及人工噪聲(AN)增強的無線隱蔽通信以提升隱蔽傳輸性能。首先,分析了Willie的探測性能并給出了總的最小探測錯誤概率下界表達式。 在此基礎(chǔ)之上,構(gòu)建以最大化有效吞吐量為目標(biāo)函數(shù),以隱蔽需求和最大AN發(fā)射功率為約束的優(yōu)化問題。該優(yōu)化問題為非凸的,通常很難直接求解。該文提出基于Dinkelbach方法的交替迭代算法聯(lián)合設(shè)計IRS的反射系數(shù)和Alice的發(fā)射功率及Bob的AN發(fā)射功率。為了降低計算復(fù)雜度,進一步提出一種低復(fù)雜度算法以獲取相應(yīng)優(yōu)化變量的解析表達式。仿真結(jié)果表明:與無IRS及無AN方案相比,所提方案可以顯著提升隱蔽傳輸性能。Abstract: In this work, an Intelligent Reflecting Surface (IRS) aided and Artificial Noise (AN) enhanced covert wireless communications is considered to improve the covert transmission performance. Firstly, the detection performance at Willie is analyzed and a lower bound on Willie’s minimum total detection error probability is presented. On this basis, an optimization problem that maximizes the effective throughput subject to the covertness constraint and the maximum AN transmit power constraint is formulated. The optimization problem is non-convex, which is generally difficult to tackle directly. Then, an alternating iterative algorithm based on Dinkelbach method is proposed to jointly design the IRS reflection beamforming and Alice’s transmit power together with Bob’s AN transmit power. In order to reduce the computational complexity, a low-complexity algorithm is further proposed to obtain analytical expressions for the corresponding optimization variables. Simulation results show that the proposed scheme improves significantly the covert transmission performance compared with the schemes without IRS and without AN.
-
表 1 基于Dinkelbach理論的迭代算法
初始化參數(shù)$P_{\rm}^{\max }$, $ K $, $ N $, $ \rho $, $ {\sigma _{\rm}} $, $ {\sigma _{\rm{w}}} $, $ \beta $, $ {P_{\rm{a}}} $和$ {P_{\rm}} $;設(shè)置收斂精
度$ \varepsilon \ge 0 $; 設(shè)置$ {V_M} = 1 $和$ {V_D} = 1 $;(1) While $ |{V_M} - \beta | \ge \varepsilon $ do (2) 求解優(yōu)化問題式(19)獲得$ M $并計算目標(biāo)函數(shù)值記為$ {V_M} $; (3) While $ |{V_D}| \ge \varepsilon $ do 將步驟(3)所求最優(yōu)的$ M $代入優(yōu)化問題式(20),求解
優(yōu)化問題式(20)得到$ {P_{\rm{a}}} $和$ {P_{\rm}} $;
更新$ \beta = \dfrac{{{P_{\rm{a}}}{\rm{Tr}}({\boldsymbol{BM}})}}{{\rho {P_{\rm}} + \sigma _{\text}^2}} $;計算$ {V_D} = {P_{\rm{a}}}{\rm{Tr}}({\boldsymbol{BM}}) - \beta (\rho {P_{\rm}} + \sigma _{\text}^2) $; End While (4) 更新$ {P_{\rm{a}}} $和$ {P_{\rm}} $ (5) End While 下載: 導(dǎo)出CSV
表 2 低復(fù)雜度算法
初始化:設(shè)置系統(tǒng)參數(shù)$ P_{\rm b}^{\max } $, $ K $, $ N $, $ \rho $,$ {\sigma _{\rm b}} $和${\sigma _{\rm{w}}}$; (1) 根據(jù)式(23)計算IRS反射系數(shù)$ u $;
(2) if $\sigma _{\rm b}^2 \ge \dfrac{ {\rho \sigma _{\rm{w}}^2} }{ {|{ {\boldsymbol{u} }^{\rm{H} } }{\boldsymbol{c} } + {h_{ {\rm{bw} } } }{|^2} } }$ then;$ P_{\rm b}^* = P_{\rm b}^{\max } $ Else $ P_{\rm b}^* = 0 $; End if (3) 計算目標(biāo)函數(shù)值; (4) End 下載: 導(dǎo)出CSV
-
[1] DONG Lun, HAN Zhu, PETROPULU A P, et al. Improving wireless physical layer security via cooperating relays[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1875–1888. doi: 10.1109/TSP.2009.2038412 [2] LIU Zhihong, LIU Jiajia, ZENG Yong, et al. On covert communication with interference uncertainty[C]. 2018 IEEE International Conference on Communications, Kansas City, USA, 2018: 1–6. [3] BASH B A, GOECKEL D, and TOWSLEY D. Limits of reliable communication with low probability of detection on AWGN channels[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1921–1930. doi: 10.1109/JSAC.2013.130923 [4] SHAHZAD K, ZHOU Xiangyun, YAN Shihao, et al. Achieving covert wireless communications using a full-duplex receiver[J]. IEEE Transactions on Wireless Communications, 2018, 17(12): 8517–8530. doi: 10.1109/TWC.2018.2878014 [5] SHU Feng, XU Tingzhen, HU Jinsong, et al. Delay-constrained covert communications with a full-duplex receiver[J]. IEEE Wireless Communications Letters, 2019, 8(3): 813–816. doi: 10.1109/LWC.2019.2894617 [6] LI Ke, KELLY P A, and GOECKEL D. Optimal power adaptation in covert communication with an uninformed jammer[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3463–3473. doi: 10.1109/TWC.2020.2973975 [7] HU Jinsong, YAN Shihao, ZHOU Xiangyun, et al. Covert communication achieved by a greedy relay in wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4766–4779. doi: 10.1109/TWC.2018.2831217 [8] ZHOU Xiaobo, YAN Shihao, HU Jinsong, et al. Joint optimization of a UAV's trajectory and transmit power for covert communications[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4276–4290. doi: 10.1109/TSP.2019.2928949 [9] HE Biao, YAN Shihao, ZHOU Xiangyun, et al. Covert wireless communication with a poisson field of interferers[J]. IEEE Transactions on Wireless Communications, 2018, 17(9): 6005–6017. doi: 10.1109/TWC.2018.2854540 [10] ZHENG Tongxing, WANG Huiming, NG D W K, et al. Multi-antenna covert communications in random wireless networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(3): 1974–1987. doi: 10.1109/TWC.2019.2900915 [11] YAN Shihao, HE biao, ZHOU Xiangyun, et al. Delay-intolerant covert communications with either fixed or random transmit power[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(1): 129–140. doi: 10.1109/TIFS.2018.2846257 [12] 徐勇軍, 高正念, 王茜竹, 等. 基于智能反射面輔助的無線供電通信網(wǎng)絡(luò)魯棒能效最大化算法[J]. 電子與信息學(xué)報, 待發(fā)表.XU Yongjun, GAO Zhengnian, WANG Qianzhu, et al. . Robust energy efficiency maximization algorithm for intelligent reflecting surface-aided wireless powered-communication networks[J]. Journal of Electronics & Information Technology, To be published. [13] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609 [14] ZHOU Xiaobo, YAN Shihao, WU Qingqing, et al. Intelligent reflecting surface (IRS)-aided covert wireless communications with delay constraint[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 532–547. doi: 10.1109/TWC.2021.3098099 [15] WANG Chao, LI Zan, SHI Jia, et al. Intelligent reflecting surface-assisted multi-antenna covert communications: Joint active and passive beamforming optimization[J]. IEEE Transactions on Communications, 2021, 69(6): 3984–4000. doi: 10.1109/TCOMM.2021.3062376 [16] YAN Shihao, ZHOU Xiangyun, HU Jinsong, et al. Low probability of detection communication: Opportunities and challenges[J]. IEEE Wireless Communications, 2019, 26(5): 19–25. doi: 10.1109/MWC.001.1900057 [17] ZHOU Xiaobo, CAI Wenlong, CHEN Riqing, et al. Secrecy energy efficiency optimization for MISO SWIPT systems[J]. Physical Communication, 2018, 28: 19–27. doi: 10.1016/j.phycom.2018.03.001 [18] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025 [19] ZIONTS S. Programming with linear fractional functionals[J]. Naval Research Logistics Quarterly, 1968, 15(3): 449–451. doi: 10.1002/nav.3800150308 -