基于Khatri-Rao積的三維前視聲吶空間方位估計技術
doi: 10.11999/JEIT200657
-
1.
哈爾濱工程大學水聲技術重點實驗室 哈爾濱 150001
-
2.
哈爾濱工程大學海洋信息獲取與安全工信部重點實驗室 哈爾濱 150001
-
3.
哈爾濱工程大學水聲工程學院 哈爾濱 150001
-
4.
中國電子科技集團第三十六研究所 嘉興 314000
DOA Estimation Technology Based on Khatri-Rao Product for 3D Forward-looking Sonar
-
1.
Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China
-
2.
Key Laboratory of Marine Information Acquisition and Security, Harbin Engineering University, Harbin 150001, China
-
3.
College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
-
4.
No. 36 Research Institute of CETC, Jiaxing 314000, China
-
摘要: 為了提高3維前視聲吶的方位分辨能力,同時避免2維(2D)方位估計(DOA)方法失效,該文提出1維(1D)空間角估計方法、基于Vernier法的垂直角估計方法和基于最小角定理的水平角方位估計方法。首先基于不同子陣構造互協(xié)方差矩陣避免2維方位估計模型失效,再利用Khatri-Rao積進行虛擬孔徑擴展;將擴展后的陣列導向矢量和觀測向量模型用于2維方位估計。與原陣列的導向矢量相比,虛擬陣元數(shù)量約增加1倍,陣列的孔徑得到有效擴展。仿真實驗表明,與單觀測向量波束形成2維方位估計方法相比,所提方法在2維方位估計問題中具有更高的分辨能力,均方根誤差更低;水池實驗進一步驗證了該文所提方法的工程實用性。
-
關鍵詞:
- 3維前視聲吶 /
- 2維方位估計 /
- 虛擬孔徑擴展 /
- Khatri-Rao積 /
- Vernier法
Abstract: In order to obtain higher resolution and avoid the failure of Two-Dimensional (2D) of Direction-Of-Arrival (DOA) estimation, One-Dimensional (1D) spatial DOA estimation method, vertical DOA estimation via Vernier method and horizontal DOA estimation method via minimum angle theorem are proposed. First, covariance matrices are constructed based on various subarrays to alleviate the failure of 2D model, and the Khatri-Rao product is adopted to extend the virtual array aperture. Second, the extended observation models and corresponding array steer vector are exploited for 2D DOA estimation. Compared with the steer vector of the original array, the number of virtual array elements is doubled, and thus the array aperture is extended. Simulation results show that the proposed method has better resolution and lower RMSE performance in 2D DOA estimation problem compared with the Single Measured Vector Beamforming method. The tank experiment further verifies the engineering practicability of the proposed method. -
HENLEY H and ZIMMERMAN M J. Performance of 3D forward looking sonar for bathymetric survey[C]. OCEANS 2017-Anchorage, Anchorage, USA, 2017: 1–9. RUSSEL I and WRIGHT R G. Navigation SONAR: More than underwater radar realizing the full potential of navigation and obstacle avoidance sonar[J]. International Hydrographic Review, 2017: 41–60. ZIMMERMAN M J and HENLEY H. Applications of today’s 3D forward looking sonar for real-time navigation and bathymetric survey[C]. OCEANS 2017-Anchorage, Anchorage, USA, 2017: 1–7. Tritech International Ltd. Eclipse 3D imaging sonar product manual[EB/OL]. https://www.tritech.co.uk/media/support/manuals/eclipse-multibeam-sonar-operator-installation-manual0.pdf, 2020. Coda Octopus Products Ltd. Echoscope 4G datasheet[EB/OL]. https://d1io3yog0oux5.cloudfron.net/_d5c808f4da6c3542e43d3cef98f952d3/codaoctopus/db/443/2846/brochure/Echoscope+4G+Datasheet+1.1.1.20.pdf, 2020. Teledyne RESON. SeaBat? F30[EB/OL]. https://www.bluezonegroup.com.au/_literature_165599/SeaBat_F30_Product_Leaflet, 2020. 陳建, 王樹勛. 基于高階累積量虛擬陣列擴展的DOA估計[J]. 電子與信息學報, 2007, 29(5): 1041–1044.CHEN Jian and WANG Shuxun. DOA estimation of virtual array extension based on fourth-order cumulant[J]. Journal of Electronics &Information Technology, 2007, 29(5): 1041–1044. 楊永晶, 俞志富. 基于虛擬陣列擴展的DOA估計[J]. 電子信息對抗技術, 2014, 29(5): 32–35, 39. doi: 10.3969/j.issn.1674-2230.2014.05.008YANG Yongjing and YU Zhifu. DOA estimation based on virtual array extension[J]. Electronic Information Warfare Technology, 2014, 29(5): 32–35, 39. doi: 10.3969/j.issn.1674-2230.2014.05.008 韓佳輝, 畢大平, 陳璐. 基于虛擬孔徑擴展的非均勻稀疏陣DOA估計[J]. 電光與控制, 2018, 25(3): 28–31. doi: 10.3969/j.issn.1671-637X.2018.03.007HAN Jiahui, BI Daping, and CHEN Lu. Non-uniform sparse array DOA estimation based on virtual aperture expansion[J]. Electronics Optics &Control, 2018, 25(3): 28–31. doi: 10.3969/j.issn.1671-637X.2018.03.007 譚偉杰, 馮西安, 張楊梅. 陣元失效下基于Khatri-Rao積的高分辨測向方法[J]. 太赫茲科學與電子信息學報, 2017, 15(1): 47–53. doi: 10.11805/TKYDA201701.0047TAN Weijie, FENG Xi’an, and ZHANG Yangmei. High-resolution DOA estimation method based on Khatri-Rao product in presence of element failure[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(1): 47–53. doi: 10.11805/TKYDA201701.0047 劉志剛, 汪晉寬, 王福利. 虛擬空間平滑算法[J]. 電子學報, 2007, 35(9): 1762–1765. doi: 10.3321/j.issn:0372-2112.2007.09.030LIU Zhigang, WANG Jinkuan, and WANG Fuli. Virtual spatial smoothing algorithm[J]. Acta Electronica Sinica, 2007, 35(9): 1762–1765. doi: 10.3321/j.issn:0372-2112.2007.09.030 孫兵, 阮懷林, 吳晨曦, 等. 基于Toeplitz協(xié)方差矩陣重構的互質(zhì)陣列DOA估計方法[J]. 電子與信息學報, 2019, 41(8): 1924–1930. doi: 10.11999/JEIT181041SUN Bing, RUAN Huailin, WU Chenxi, et al. Direction of arrival estimation with coprime array based on toeplitz covariance matrix reconstruction[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1924–1930. doi: 10.11999/JEIT181041 YUFIT G and MAILLARD E P. 3D forward looking sonar technology for surface ships and AUV: Example of design and bathymetry application[C]. 2013 IEEE International Underwater Technology Symposium, Tokyo, Japan, 2013: 1–5. 周天, 沈嘉俊, 陳寶偉, 等. 應用二維稀疏陣列的三維前視聲吶方位估計[J]. 哈爾濱工程大學學報, 2020, 41(10): 1450–1456. doi: 10.11990/jheu.202007031ZHOU Tian, SHEN Jiajun, Chen Baowei, et al. Direction-of-arrival estimation of three-dimensional forward-looking sonar with two-dimensional sparse array[J]. Journal of Harbin Engineering University, 2020, 41(10): 1450–1456. doi: 10.11990/jheu.202007031 姚永紅, 周天, 李海森, 等. 基于新型陣列結構的多波束SAS逐點成像算法研究[J]. 電子與信息學報, 2011, 33(4): 838–843. doi: 10.3724/SP.J.1146.2010.00730YAO Yonghong, ZHOU Tian, LI Haisen, et al. Research on the dot-by-dot imaging algorithm for multi-beam SAS based on a new array configuration[J]. Journal of Electronics &Information Technology, 2011, 33(4): 838–843. doi: 10.3724/SP.J.1146.2010.00730 王俊, 向洪, 魏少明, 等. 單快拍數(shù)據(jù)的分布式二維陣列測角方法研究[J]. 電子與信息學報, 2018, 40(6): 1375–1382. doi: 10.11999/JEIT170856WANG Jun, XIANG Hong, WEI Shaoming, et al. 2-D DOA estimation of distributed array with single snapshot[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1375–1382. doi: 10.11999/JEIT170856 LLORT-PUJOL G, SINTES C, and GUERIOT D. Analysis of Vernier interferometers for sonar bathymetry[C]. OCEANS 2008, Quebec City, Canada, 2008: 1–5. BURDIC W S. Underwater Acoustic System Analysis[M]. 2nd ed. Los Altos Hills: Peninsula, 2002: 317–320. SINTES C, FOOTE K G, LLORT-PUJOL G, et al. Relationships among Vernier-method and other direction-of-arrival estimators[C]. OCEANS 2015, Genoa, Italy, 2015: 1–6. -