一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于Ransac算法的捷變頻聯(lián)合正交頻分復用雷達高速多目標參數(shù)估計

全英匯 高霞 沙明輝 方文 李亞超 邢孟道

全英匯, 高霞, 沙明輝, 方文, 李亞超, 邢孟道. 基于Ransac算法的捷變頻聯(lián)合正交頻分復用雷達高速多目標參數(shù)估計[J]. 電子與信息學報, 2021, 43(7): 1970-1977. doi: 10.11999/JEIT200529
引用本文: 全英匯, 高霞, 沙明輝, 方文, 李亞超, 邢孟道. 基于Ransac算法的捷變頻聯(lián)合正交頻分復用雷達高速多目標參數(shù)估計[J]. 電子與信息學報, 2021, 43(7): 1970-1977. doi: 10.11999/JEIT200529
Yinghui QUAN, Xia GAO, Minghui SHA, Wen FANG, Yachao LI, Mengdao XING. High Speed Multi-target Parameter Estimation for FA-OFDM Radar Based on Ransac Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1970-1977. doi: 10.11999/JEIT200529
Citation: Yinghui QUAN, Xia GAO, Minghui SHA, Wen FANG, Yachao LI, Mengdao XING. High Speed Multi-target Parameter Estimation for FA-OFDM Radar Based on Ransac Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1970-1977. doi: 10.11999/JEIT200529

基于Ransac算法的捷變頻聯(lián)合正交頻分復用雷達高速多目標參數(shù)估計

doi: 10.11999/JEIT200529
基金項目: 國家自然科學基金(61303035, 61772397),中央高?;究蒲袠I(yè)務費專項資金,西安電子科技大學研究生創(chuàng)新基金
詳細信息
    作者簡介:

    全英匯:男,1981年生,博士,教授,研究方向為雷達信號處理、主動波形對抗

    高霞:女,1996年生,碩士生,研究方向為雷達信號處理

    沙明輝:男,1986年生,博士生,研究方向為雷達抗干擾和信號處理

    方文:男,1996年生,碩士生,研究方向為雷達信號處理

    李亞超:男,1981年生,博士,教授,研究方向為雷達成像和實時信號處理

    邢孟道:男,1975年生,博士,教授,研究方向為SAR/ISAR成像、動目標檢測等

    通訊作者:

    高霞 2636897970@qq.com

  • 中圖分類號: TN957.51

High Speed Multi-target Parameter Estimation for FA-OFDM Radar Based on Ransac Algorithm

Funds: The National Natural Science Foundation of China (61303035, 61772397), The Foundation Research Funds for Central University, The Innovation Fund of Xidian University
  • 摘要: 在現(xiàn)代雷達電子戰(zhàn)場中,目標檢測與其參數(shù)估計有著非常重要的意義。因此,該文提出了一種基于隨機抽樣一致算法(Ransac)的捷變頻聯(lián)合正交頻分復用(FA-OFDM)雷達高速多目標參數(shù)估計的方法。首先,在傳統(tǒng)捷變頻雷達的每個脈沖內同時發(fā)射多個頻率隨機跳變的窄帶OFDM子載波。將單個脈沖內所有子載波的回波信號進行脈沖壓縮后,采用迭代自適應譜估計(IAA)算法合成目標的高分辨距離。然后,分別對各個脈沖的回波進行脈沖壓縮和迭代自適應譜估計,得到不同脈沖時刻的高分辨距離,構成觀測數(shù)據集。再根據Ransac算法估計信號參數(shù)模型的步驟,擬合多條時間-距離直線,進而對高速運動的多個目標同時進行參數(shù)估計。最后,分別分析了信噪比(SNR)對檢測概率以及目標自身速度對其相對估計誤差的影響。仿真實驗驗證了所提算法的有效性。
  • 圖  1  FA-OFDM雷達發(fā)射信號示意圖

    圖  2  3個相鄰目標仿真結果圖

    圖  3  基于Ransac算法的高速多目標參數(shù)估計方法的流程圖

    圖  4  信噪比為–12 dB時的仿真結果

    圖  5  信噪比為–28 dB時的仿真結果

    圖  6  信噪比對檢測概率的影響

    圖  7  目標速度對估計誤差的影響

    圖  8  輸出SNR對RMSE的影響

    表  1  仿真參數(shù)

    參數(shù)數(shù)值參數(shù)數(shù)值
    脈沖寬度4 μs脈沖重復頻率25 kHz
    信號帶寬24 MHz采樣頻率48 MHz
    子載波個數(shù)64中心載頻14 GHz
    跳頻總數(shù)128跳頻帶寬20 MHz
    脈沖總數(shù)64輸入信噪比–12 dB / –28 dB
    目標距離[3994, 4001, 4006] m目標速度[600, 1220, 5800] m/s
    下載: 導出CSV
  • [1] JANKIRAMAN M, WESSELS B J, and VAN GENDEREN P. Design of a multifrequency FMCW radar[C]. The 28th European Microwave Conference, Amsterdam, Netherlands, 1998: 548–589. doi: 10.1109/EUMA.1998.338053.
    [2] JANKIRAMAN M, WESSELS B J, and VAN GENDEREN P. Pandora multifrequency FMCW/SFCW radar[C].IEEE National Radar Conference, Alexandria, USA, 2000: 750–757. doi: 10.1109/RADAR.2000.851929.
    [3] 霍凱, 趙晶晶. OFDM新體制雷達研究現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學報, 2015, 37(11): 2776–2785. doi: 10.11999/JEIT150335

    HUO Kai and ZHAO Jingjing. The Development and prospect of the new OFDM radar[J]. Jounal of Electronics &Information Technology, 2015, 37(11): 2776–2785. doi: 10.11999/JEIT150335
    [4] WANG Jun, ZHANG Bochen, and LEI Peng. Ambiguity function analysis for OFDM radar signals[C]. CIE International Conference on Radar, Guangzhou, China, 2016: 10-13. doi: 10.1109/RADAR.2016.8059592.
    [5] 肖博, 霍凱, 劉永祥. 雷達通信一體化研究現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學報, 2019, 41(3): 739–749. doi: 10.11999/JEIT180515

    XIAO Bo, HUO Kai, and LIU Yongxiang. Development and Prospect of Radar and Communication Integration[J]. Jounal of Electronics &Information Technology, 2019, 41(3): 739–749. doi: 10.11999/JEIT180515
    [6] 劉冰凡, 陳伯孝. 基于OFDM-LFM信號的MIMO雷達通信一體化信號共享設計研究[J]. 電子與信息學報, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547

    LIU Bingfan and CHEN Baixiao. Integration of MIMO Radar and Communication with OFDM-LFM Signals[J]. Jounal of Electronics &Information Technology, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547
    [7] SCHWEIZER B, SCHINDLER D, KNILL C, et al. Expanding the unambiguous velocity limitation of the stepped-carrier OFDM radar scheme[C]. The 15th European Radar Conference, Madrid, Spanish, 2018: 26–28. doi: 10.23919/EuRAD.2018.8546621.
    [8] SCHWEIZER B, KNILL C, SCHINDLER D et al. Stepped-Carrier OFDM-Radar processing scheme to retrieve high-resolution range-velocity profile at low sampling rate[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(3): 1610–1618. doi: 10.1109/TMTT.2017.2751463
    [9] LELLOUCH G, TRAN P, PRIBIC R, et al. OFDM waveforms for frequency agility and opportunities for Doppler processing in radar[C]. IEEE Radar Conference, Rome, Italy, 2008: 1–6. doi: 10.1109/RADAR.2008.4720798.
    [10] HUO Kai, DENG B, LIU Y, et al. The principle of synthesizing HRRP based on a new OFDM phase-coded stepped-frequency radar signal[C]. IEEE 10th International Conference On Signal Processing Proceedings, Beijing, China, 2010: 1994–1998. doi: 10.1109/ICOSP.2010.5655889.
    [11] LELLOUCH G, PRIBIC R and VAN GENDEREN P. Frequency agile stepped OFDM waveform for HRR[C]. 2009 International Waveform Diversity and Design Conference, Kissimmee, USA, 2009: 90–93. doi: 10.1109/WDDC.2009.4800321.
    [12] 黃瑞, 杜小勇, 胡衛(wèi)東. OFDM雷達多目標運動參數(shù)的近似最大似然估計[J]. 雷達學報, 2018, 7(4): 507–513. doi: 10.12000/JR17116

    HUANG Rui, DU Xiaoyong and HU Weidong. Approximate maximum likelihood estimator of multi-target motion parameters for orthogonal frequency division multiplexing radar[J]. Journal Of Radars, 2018, 7(4): 507–513. doi: 10.12000/JR17116
    [13] 全英匯, 高霞, 沙明輝, 等. 基于期望最大化算法的捷變頻聯(lián)合正交頻分復用雷達高速多目標參數(shù)估計[J]. 電子與信息學報, 2018, 7(4): 507–513. doi: 10.11999/JEIT190474

    QUAN Yinghui, GAO Xia, SHA Minghui, et al. High Speed Multi-target Parameter Estimation for FA-OFDM Radar Based on Expectation Maximization Algorithm[J]. Jounal of Electronics &Information Technology, 2018, 7(4): 507–513. doi: 10.11999/JEIT190474
    [14] QUAN Yinghui, LI Yachao, WU Yaojun, et al. Moving target detection for frequency agility radar by sparse reconstruction[J]. Rev. Sci. Instrum., 2016, 87(9): 811–815. doi: 10.1049/el.2011.1293
    [15] QUAN Yinghui, WU Yaojun, LI Yachao, et al. Range–Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 348–352. doi: 10.1049/iet-rsn.2017.0421
    [16] 章平亮. 自適應迭代譜估計的統(tǒng)一分析與拓展[D]. 復旦大學. 2013: 9–20.

    ZHANG Pingliang. Unified analysis and development of adaptive iterative spectrum estimation[D]. Fudan University. 2013: 9–20.
    [17] JENSEN J R, GLENTIS G O, CHRISTENSEN M G, et al. Computationally efficient IAA-based estimation of the fundamental frequency[C]. 2012 Proceedings of the 20th European Signal Processing Conference(EUSIPCO), Bucharest, Romania, 2012.
    [18] GLENTIS G O and JAKOBSSON A. Efficient implementation of iterative adaptive approach spectral estimation techniques[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 4154–4167. doi: 10.1109/TSP.2011.2145376
    [19] XUE Ming, XU Luzhou, and LI Jian. IAA Spectral Estimation: Fast implementation using the Gohberg-Semencul factorization[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3251–3261. doi: 10.1109/ICASSP.2011.5947305
    [20] ZHAO Mingfu, CHEN Haijun, SONG Tao, et al. Research on image matching based on improved RANSAC-SIFT algorithm[C]. 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 2017: 1–3. doi: 10.1109/ICOCN.2017.8121270.
    [21] RAZA M A, AWAIS REHMAN M, QURESHI I M, et al. Mahmood. A Simplified approach to Visual Odometry using Graph Cut RANSAC[C]. 2018 5th International Multi-Topic ICT Conference (IMTIC), Jamshoro, 2018: 1–7. doi: 10.1109/IMTIC.2018.8467263.
  • 加載中
圖(8) / 表(1)
計量
  • 文章訪問數(shù):  1217
  • HTML全文瀏覽量:  508
  • PDF下載量:  69
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2020-06-29
  • 修回日期:  2020-12-06
  • 網絡出版日期:  2020-12-15
  • 刊出日期:  2021-07-10

目錄

    /

    返回文章
    返回