基于Ransac算法的捷變頻聯(lián)合正交頻分復用雷達高速多目標參數(shù)估計
doi: 10.11999/JEIT200529
-
1.
西安電子科技大學電子工程學院 西安 710071
-
2.
北京無線電測量研究所 北京 100854
-
3.
西安電子科技大學雷達信號處理國家重點實驗室 西安 710071
High Speed Multi-target Parameter Estimation for FA-OFDM Radar Based on Ransac Algorithm
-
1.
School of Electronic Engineering, Xidian University, Xi’an 710071, China
-
2.
Beijing Institute of Radio Measurement, Beijing 100854, China
-
3.
National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
-
摘要: 在現(xiàn)代雷達電子戰(zhàn)場中,目標檢測與其參數(shù)估計有著非常重要的意義。因此,該文提出了一種基于隨機抽樣一致算法(Ransac)的捷變頻聯(lián)合正交頻分復用(FA-OFDM)雷達高速多目標參數(shù)估計的方法。首先,在傳統(tǒng)捷變頻雷達的每個脈沖內同時發(fā)射多個頻率隨機跳變的窄帶OFDM子載波。將單個脈沖內所有子載波的回波信號進行脈沖壓縮后,采用迭代自適應譜估計(IAA)算法合成目標的高分辨距離。然后,分別對各個脈沖的回波進行脈沖壓縮和迭代自適應譜估計,得到不同脈沖時刻的高分辨距離,構成觀測數(shù)據集。再根據Ransac算法估計信號參數(shù)模型的步驟,擬合多條時間-距離直線,進而對高速運動的多個目標同時進行參數(shù)估計。最后,分別分析了信噪比(SNR)對檢測概率以及目標自身速度對其相對估計誤差的影響。仿真實驗驗證了所提算法的有效性。
-
關鍵詞:
- 參數(shù)估計 /
- 高速多目標 /
- 捷變頻聯(lián)合正交頻分復用雷達 /
- 迭代自適應譜估計算法 /
- 隨機抽樣一致算法
Abstract: In modern radar electronic battlefield, target detection and parameter estimation have great significance. Therefore, a high-speed multi-target parameter estimation method for Frequency Agile-Orthogonal Frequency Division Multiplexing (FA-OFDM) radar based on Random sampling consensus (Ransac) algorithm is proposed in this paper. Firstly, multiple narrowband OFDM subcarriers with random frequency hopping are simultaneously transmitted in each pulse of conventional frequency agile radar. The echo signals of all subcarriers in a single pulse are compressed, and then the high-resolution range of the target is synthesized by Iterative Adaptive Approach (IAA) algorithm. Furthermore, the echoes of each pulse are compressed and iterative adaptive spectrum estimated, and the high-resolution distance of different pulse time is obtained to form the observation data set. Then, according to the steps of the Ransac algorithm to estimate the signal parameter model, multiple time-distance lines are fitted, and then parameters of multiple high-speed moving targets are estimated at the same time. Finally, the influence of the Signal-to-Noise Ratio (SNR) on detection probability and the target velocity on relative error of estimation are analyzed, respectively. Simulations are provided to verify the effectiveness of the proposal. -
表 1 仿真參數(shù)
參數(shù) 數(shù)值 參數(shù) 數(shù)值 脈沖寬度 4 μs 脈沖重復頻率 25 kHz 信號帶寬 24 MHz 采樣頻率 48 MHz 子載波個數(shù) 64 中心載頻 14 GHz 跳頻總數(shù) 128 跳頻帶寬 20 MHz 脈沖總數(shù) 64 輸入信噪比 –12 dB / –28 dB 目標距離 [3994, 4001, 4006] m 目標速度 [600, 1220, 5800] m/s 下載: 導出CSV
-
[1] JANKIRAMAN M, WESSELS B J, and VAN GENDEREN P. Design of a multifrequency FMCW radar[C]. The 28th European Microwave Conference, Amsterdam, Netherlands, 1998: 548–589. doi: 10.1109/EUMA.1998.338053. [2] JANKIRAMAN M, WESSELS B J, and VAN GENDEREN P. Pandora multifrequency FMCW/SFCW radar[C].IEEE National Radar Conference, Alexandria, USA, 2000: 750–757. doi: 10.1109/RADAR.2000.851929. [3] 霍凱, 趙晶晶. OFDM新體制雷達研究現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學報, 2015, 37(11): 2776–2785. doi: 10.11999/JEIT150335HUO Kai and ZHAO Jingjing. The Development and prospect of the new OFDM radar[J]. Jounal of Electronics &Information Technology, 2015, 37(11): 2776–2785. doi: 10.11999/JEIT150335 [4] WANG Jun, ZHANG Bochen, and LEI Peng. Ambiguity function analysis for OFDM radar signals[C]. CIE International Conference on Radar, Guangzhou, China, 2016: 10-13. doi: 10.1109/RADAR.2016.8059592. [5] 肖博, 霍凱, 劉永祥. 雷達通信一體化研究現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學報, 2019, 41(3): 739–749. doi: 10.11999/JEIT180515XIAO Bo, HUO Kai, and LIU Yongxiang. Development and Prospect of Radar and Communication Integration[J]. Jounal of Electronics &Information Technology, 2019, 41(3): 739–749. doi: 10.11999/JEIT180515 [6] 劉冰凡, 陳伯孝. 基于OFDM-LFM信號的MIMO雷達通信一體化信號共享設計研究[J]. 電子與信息學報, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547LIU Bingfan and CHEN Baixiao. Integration of MIMO Radar and Communication with OFDM-LFM Signals[J]. Jounal of Electronics &Information Technology, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547 [7] SCHWEIZER B, SCHINDLER D, KNILL C, et al. Expanding the unambiguous velocity limitation of the stepped-carrier OFDM radar scheme[C]. The 15th European Radar Conference, Madrid, Spanish, 2018: 26–28. doi: 10.23919/EuRAD.2018.8546621. [8] SCHWEIZER B, KNILL C, SCHINDLER D et al. Stepped-Carrier OFDM-Radar processing scheme to retrieve high-resolution range-velocity profile at low sampling rate[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(3): 1610–1618. doi: 10.1109/TMTT.2017.2751463 [9] LELLOUCH G, TRAN P, PRIBIC R, et al. OFDM waveforms for frequency agility and opportunities for Doppler processing in radar[C]. IEEE Radar Conference, Rome, Italy, 2008: 1–6. doi: 10.1109/RADAR.2008.4720798. [10] HUO Kai, DENG B, LIU Y, et al. The principle of synthesizing HRRP based on a new OFDM phase-coded stepped-frequency radar signal[C]. IEEE 10th International Conference On Signal Processing Proceedings, Beijing, China, 2010: 1994–1998. doi: 10.1109/ICOSP.2010.5655889. [11] LELLOUCH G, PRIBIC R and VAN GENDEREN P. Frequency agile stepped OFDM waveform for HRR[C]. 2009 International Waveform Diversity and Design Conference, Kissimmee, USA, 2009: 90–93. doi: 10.1109/WDDC.2009.4800321. [12] 黃瑞, 杜小勇, 胡衛(wèi)東. OFDM雷達多目標運動參數(shù)的近似最大似然估計[J]. 雷達學報, 2018, 7(4): 507–513. doi: 10.12000/JR17116HUANG Rui, DU Xiaoyong and HU Weidong. Approximate maximum likelihood estimator of multi-target motion parameters for orthogonal frequency division multiplexing radar[J]. Journal Of Radars, 2018, 7(4): 507–513. doi: 10.12000/JR17116 [13] 全英匯, 高霞, 沙明輝, 等. 基于期望最大化算法的捷變頻聯(lián)合正交頻分復用雷達高速多目標參數(shù)估計[J]. 電子與信息學報, 2018, 7(4): 507–513. doi: 10.11999/JEIT190474QUAN Yinghui, GAO Xia, SHA Minghui, et al. High Speed Multi-target Parameter Estimation for FA-OFDM Radar Based on Expectation Maximization Algorithm[J]. Jounal of Electronics &Information Technology, 2018, 7(4): 507–513. doi: 10.11999/JEIT190474 [14] QUAN Yinghui, LI Yachao, WU Yaojun, et al. Moving target detection for frequency agility radar by sparse reconstruction[J]. Rev. Sci. Instrum., 2016, 87(9): 811–815. doi: 10.1049/el.2011.1293 [15] QUAN Yinghui, WU Yaojun, LI Yachao, et al. Range–Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 348–352. doi: 10.1049/iet-rsn.2017.0421 [16] 章平亮. 自適應迭代譜估計的統(tǒng)一分析與拓展[D]. 復旦大學. 2013: 9–20.ZHANG Pingliang. Unified analysis and development of adaptive iterative spectrum estimation[D]. Fudan University. 2013: 9–20. [17] JENSEN J R, GLENTIS G O, CHRISTENSEN M G, et al. Computationally efficient IAA-based estimation of the fundamental frequency[C]. 2012 Proceedings of the 20th European Signal Processing Conference(EUSIPCO), Bucharest, Romania, 2012. [18] GLENTIS G O and JAKOBSSON A. Efficient implementation of iterative adaptive approach spectral estimation techniques[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 4154–4167. doi: 10.1109/TSP.2011.2145376 [19] XUE Ming, XU Luzhou, and LI Jian. IAA Spectral Estimation: Fast implementation using the Gohberg-Semencul factorization[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3251–3261. doi: 10.1109/ICASSP.2011.5947305 [20] ZHAO Mingfu, CHEN Haijun, SONG Tao, et al. Research on image matching based on improved RANSAC-SIFT algorithm[C]. 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 2017: 1–3. doi: 10.1109/ICOCN.2017.8121270. [21] RAZA M A, AWAIS REHMAN M, QURESHI I M, et al. Mahmood. A Simplified approach to Visual Odometry using Graph Cut RANSAC[C]. 2018 5th International Multi-Topic ICT Conference (IMTIC), Jamshoro, 2018: 1–7. doi: 10.1109/IMTIC.2018.8467263. -