認知無人機網(wǎng)絡中次級鏈路吞吐量優(yōu)化研究
doi: 10.11999/JEIT200056
-
1.
空軍工程大學信息與導航學院 西安 710077
-
2.
空軍工程大學研究生院 西安 710077
-
3.
中國人民解放軍94162部隊 西安 710600
Throughput Optimization of Secondary Link in Cognitive UAV Network
-
1.
Information and Navigation College, Aire Force Engineering University, Xi’an 710077, China
-
2.
Graduate School, Aire Force Engineering University, Xi’an 710077, China
-
3.
Unit 94162 of PLA, Xi’an 710600, China
-
摘要:
無人機(UAV)的便攜性和高機動性使其與認知無線電(CR)結合的應用場景更加實用。在構建的無人機認知無線網(wǎng)絡(CRN)模型中,該文提出UAV單弧度吞吐量優(yōu)化方案,在確保檢測概率的前提下優(yōu)化感知弧度最大化UAV平均吞吐量??紤]在信道條件不理想情況下進一步改善感知性能,提出基于協(xié)作頻譜感知(CSS)的多弧度吞吐量優(yōu)化方案,利用交替迭代優(yōu)化(AIO)算法對感知弧度和弧度數(shù)量進行聯(lián)合優(yōu)化以最大化吞吐量。仿真結果表明,該文提出的多弧度協(xié)作頻譜感知方案在信道衰落嚴重時,對于主用戶(PU)服務質量(QoS)和UAV吞吐量有明顯提升。
Abstract:The application of Unmanned Air Vehicles (UAV)-enabled Cognitive Radio (CR) is widely used due to the convenience and high mobility of the UAV. In the UAV-based Cognitive Radio Network (CRN), the throughput optimization scheme in single radian is firstly investigated, in which the sensing radian is optimized to maximize the average throughput of UAV. Then, a multi-radian throughput optimization scheme based on Cooperative Spectrum Sensing (CSS) is studied to improve the sensing performance under the non-ideal channel, and the throughput of the UAV is maximized by utilizing an Alternative Iterative Optimization (AIO) algorithm. The simulation results show that the proposed scheme has better performance on improving the throughput of the UAV and ensuring the Quality-of-Service (QoS) of the Primary User (PU) when the channel fading is serious.
-
Key words:
- Cognitive Radio (CR) /
- Unmanned Air Vehicle (UAV) /
- Spectrum Sensing (SS) /
- Frame structure /
- Throughput
-
表 1 交替迭代優(yōu)化算法
初始條件:$k = 0,i = 0,N = {N_i}$,誤差精度為$\delta $; 1:while $\left| {{R_{\rm{A}}}({\beta _0}_{_k},{N_i}) - {R_{\rm{A}}}({\beta _0}_{_{k - 1}},{N_{^{i - 1}}})} \right| > \delta $ do 2: 利用二分法,求出$N = {N_{^i}}$時的最優(yōu)弧度${\beta _0}^*$ 3: 令${\beta _0}_{_{^{k + 1}}} = {\beta _0}^*$ 4: 利用枚舉法,求出${\beta _0}_{_{^{k + 1}}}$對應的最優(yōu)數(shù)量${N^*}$ 5: 令${N_{^{i + 1}}} = {N^*}$ 6: 求出${R_{\rm{A}}}({\beta _0}_{_{^{k + 1}}},{N_{^{i + 1}}})$ 7: 令$k = k + 1,\;\;\;i = i + 1$ 8:end 輸出:${\beta _0}^* = {\beta _0}_{_k},{N^*} = {N_{^i}}$ 下載: 導出CSV
表 2 仿真參數(shù)
參數(shù) 數(shù)值 參數(shù) 數(shù)值 參數(shù) 數(shù)值 ${R_{\rm{P}}}$(m) 320 $B$(rad) $\pi /3$ ${P_{\rm{r}}}(\mu = 1)$ 0.2 ${R_{\rm{S}}}$(m) 50 ${\omega _1}$ 9.6 ${L_{{\rm{LoS}}}}$ 3 $H$(m) 60 ${\omega _{\rm{2}}}$ 0.28 ${L_{{\rm{NLoS}}}}$ 10 $f$(kHz) 500 ${f_{\rm{s}}}$(kHz) 60 ${\bar P_{\rmq7j3ldu95}}$ 0.9 ${P_{\rm{S}}}$(W) 10 ${P_{\rm{P}}}$(W) 10 ${\bar Q_{\rmq7j3ldu95}}$ 0.9 下載: 導出CSV
-
NIU Haoran, GONZALEZ-PRELCIC N, and HEATH R W. A UAV–based traffic monitoring system–invited paper[C]. The 87th IEEE Vehicular Technology Conference (VTC Spring). Porto, Portugal, 2018: 1–5. doi: 10.1109/vtcspring.2018.8417546. 高楊, 李東生, 程澤新. 無人機分布式集群態(tài)勢感知模型研究[J]. 電子與信息學報, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877GAO Yang, LI Dongsheng, and CHENG Zexin. UAV distributed swarm situation awareness model[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877 倪磊, 達新宇, 王舒, 等. 基于物理層信息加密的衛(wèi)星隱蔽通信研究[J]. 工程科學與技術, 2018, 50(1): 133–139. doi: 10.15961/j.jsuese.201700160NI Lei, DA Xinyu, WANG Shu, et al. Research on satellite covert communication based on the information encryption of physical layer[J]. Advanced Engineering Sciences, 2018, 50(1): 133–139. doi: 10.15961/j.jsuese.201700160 趙太飛, 許杉, 屈瑤, 等. 基于無線紫外光隱秘通信的偵察無人機蜂群分簇算法[J]. 電子與信息學報, 2019, 41(4): 967–972. doi: 10.11999/JEIT180491ZHAO Taifei, XU Shan, QU Yao, et al. Cluster–based algorithm of reconnaissance UAV swarm based on wireless ultraviolet secret communication[J]. Journal of Electronics &Information Technology, 2019, 41(4): 967–972. doi: 10.11999/JEIT180491 GUPTA A and JHA R K. A survey of 5G network: Architecture and emerging technologies[J]. IEEE Access, 2015, 3: 1206–1232. doi: 10.1109/ACCESS.2015.2461602 SULTANA A, ZHAO Lian, and FERNANDO X. Energy–efficient power allocation in underlay and overlay cognitive device–to–device communications[J]. IET Communications, 2019, 13(2): 162–170. doi: 10.1049/iet-com.2018.5464 LI He, OTA K, and DONG Mianxiong. Learning IoT in Edge: Deep learning for the internet of things with edge computing[J]. IEEE Network, 2018, 32(1): 96–101. doi: 10.1109/MNET.2018.1700202 SALEEM Y, REHMANI M H, and ZEADALLY S. Integration of cognitive radio technology with unmanned aerial vehicles: Issues, opportunities, and future research challenges[J]. Journal of Network and Computer Applications, 2015, 50: 15–31. doi: 10.1016/j.jnca.2014.12.002 NI Lei, Da Xinyu, HU Hang, et al. Outage constrained robust transmit design for secure cognitive radio with practical energy harvesting[J]. IEEE Access, 2018, 6: 71444–71454. doi: 10.1109/ACCESS.2018.2881477 XU Wenbo, WANG Shu, YAN Shu, et al. An efficient wideband spectrum sensing algorithm for unmanned aerial vehicle communication networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1768–1780. doi: 10.1109/JIOT.2018.2882532 AQUINO G P, GUIMAR?ES D A, MENDES L L, et al. Combined pre–distortion and censoring for bandwidth–efficient and energy–efficient fusion of spectrum sensing information[J]. Sensors, 2017, 17(3): 654. doi: 10.3390/s17030654 FAN Lisheng, LEI Xianfu, YANG Nan, et al. Secrecy cooperative networks with outdated relay selection over correlated fading channels[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7599–7603. doi: 10.1109/TVT.2017.2669240 KISHORE R, GURUGOPINATH S, MUHAIDAT S, et al. Sensing–throughput tradeoff for superior selective reporting–based spectrum sensing in energy harvesting HCRNs[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(2): 330–341. doi: 10.1109/TCCN.2019.2906915 SANTANA G M D, CRISTO R S, DEZAN C, et al. Cognitive radio for UAV communications: Opportunities and future challenges[C]. 2018 International Conference on Unmanned Aircraft Systems (ICUAS). Dallas, USA, 2018: 760–768. doi: 10.1109/ICUAS.2018.8453329. SBOUI L, GHAZZAI H, REZKI Z, et al. Achievable rates of UAV–relayed cooperative cognitive radio MIMO systems[J]. IEEE Access, 2017, 5: 5190–5204. doi: 10.1109/ACCESS.2017.2695586 ZHENG Yi, WANG Yuwen, and MENG Fanji. Modeling and simulation of pathloss and fading for air–ground link of HAPs within a network simulator[C]. 2013 International Conference on Cyber–Enabled Distributed Computing and Knowledge Discovery. Beijing, China, 2013: 421–426. doi: 10.1109/CyberC.2013.78. AL–HOURANI A, KANDEEPAN S, and LARDNER S. Optimal LAP altitude for maximum coverage[J]. IEEE Wireless Communications Letters, 2014, 3(6): 569–572. doi: 10.1109/lwc.2014.2342736 MOZAFFARI M, SAAD W, BENNIS M, et al. Drone small cells in the clouds: Design, deployment and performance analysis[C]. 2015 IEEE Global Communications Conference (GLOBECOM). San Diego, USA, 2015: 1–6. doi: 10.1109/GLOCOM.2015.7417609. GHAZZAI H, GHORBEL M B, KADRI A, et al. Energy–efficient management of unmanned aerial vehicles for underlay cognitive radio systems[J]. IEEE Transactions on Green Communications and Networking, 2017, 1(4): 434–443. doi: 10.1109/TGCN.2017.2750721 LIANG Yingchang, ZENG Yonghong, PEH E C Y, et al. Sensing–throughput tradeoff for cognitive radio networks[J]. IEEE Transactions on Wireless Communications, 2008, 7(4): 1326–1337. doi: 10.1109/twc.2008.060869 LIU Liang, ZHANG Shuowen, and ZHANG Rui. CoMP in the Sky: UAV placement and movement optimization for multi–user communications[J]. IEEE Transactions on Communications, 2019, 67(8): 5645–5658. doi: 10.1109/TCOMM.2019.2907944 -