一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

無線物理層密鑰生成技術(shù)發(fā)展及新的挑戰(zhàn)

黃開枝 金梁 陳亞軍 樓洋明 周游 馬克明 許曉明 鐘州 張勝軍

黃開枝, 金梁, 陳亞軍, 樓洋明, 周游, 馬克明, 許曉明, 鐘州, 張勝軍. 無線物理層密鑰生成技術(shù)發(fā)展及新的挑戰(zhàn)[J]. 電子與信息學(xué)報, 2020, 42(10): 2330-2341. doi: 10.11999/JEIT200002
引用本文: 黃開枝, 金梁, 陳亞軍, 樓洋明, 周游, 馬克明, 許曉明, 鐘州, 張勝軍. 無線物理層密鑰生成技術(shù)發(fā)展及新的挑戰(zhàn)[J]. 電子與信息學(xué)報, 2020, 42(10): 2330-2341. doi: 10.11999/JEIT200002
Kaizhi HUANG, Liang JIN, Yajun CHEN, Yangming LOU, You ZHOU, Keming MA, Xiaoming XU, Zhou ZHONG, Shengjun ZHANG. Development of Wireless Physical Layer Key Generation Technology and New Challenges[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2330-2341. doi: 10.11999/JEIT200002
Citation: Kaizhi HUANG, Liang JIN, Yajun CHEN, Yangming LOU, You ZHOU, Keming MA, Xiaoming XU, Zhou ZHONG, Shengjun ZHANG. Development of Wireless Physical Layer Key Generation Technology and New Challenges[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2330-2341. doi: 10.11999/JEIT200002

無線物理層密鑰生成技術(shù)發(fā)展及新的挑戰(zhàn)

doi: 10.11999/JEIT200002
基金項目: 國家自然科學(xué)基金(61521003, 61701538, 61871404, 61801435, 61601514),國家科技重大專項“新一代寬帶無線移動通信網(wǎng)”(2018ZX03002002)
詳細信息
    作者簡介:

    黃開枝:女,1973年出生,教授、博士生導(dǎo)師,研究方向為移動通信網(wǎng)絡(luò)及信息安全

    金梁:男,1969年出生,教授、博士生導(dǎo)師,研究方向為移動通信網(wǎng)絡(luò)及信息安全

    許曉明:男,1988年出生,副研究員,研究方向為移動通信網(wǎng)絡(luò)及信息安全

    通訊作者:

    許曉明 ee_xiaomingxu@sina.com

  • 中圖分類號: TN918; TN915.81

Development of Wireless Physical Layer Key Generation Technology and New Challenges

Funds: The National Natural Science Foundation of China (61521003, 61701538,61871404, 61801435, 61601514), The National Science and Technology Major Project (2018ZX03002002)
  • 摘要: 物理層安全技術(shù)從信息論安全理論出發(fā),保障通信安全,是實現(xiàn)安全與通信一體化的關(guān)鍵手段,逐漸成為國內(nèi)外研究熱點。該文圍繞無線通信物理層密鑰生成技術(shù)研究,主要聚焦在物理層密鑰生成技術(shù)的理論模型,機制機理和研究現(xiàn)狀,重點對比分析了兩種不同類型密鑰生成算法,即源型密鑰生成算法和信道型密鑰生成算法的區(qū)別和聯(lián)系,揭示了物理層密鑰技術(shù)利用通信信道內(nèi)在安全屬性促進通信安全的實質(zhì)。特別地,該文給出了一種可行的物理層密鑰生成5G工程實現(xiàn)框架。最后,該文展望了物理層密鑰生成技術(shù)未來可能的研究方向。
  • 圖  1  5G三大典型應(yīng)用場景

    圖  2  源型密鑰生成模型

    圖  3  信道型密鑰生成模型

    圖  4  面向集中化處理無線接入網(wǎng)的PLSU在基站側(cè)的實現(xiàn)框圖

    圖  5  PLSU在終端側(cè)的實現(xiàn)框圖

    表  1  源型密鑰生成的相關(guān)實驗總結(jié)

    測試環(huán)境共享隨機源實驗床相關(guān)文獻
    WiFi(IEEE 802.11)CSI,RSSIntel5300NIC, USRP, WARP[14,16-18]
    IoT(IEEE 802.15)RSSMICAz[25], TelosB[26][19,27]
    BluetoothRSS智能手機[20]
    LTERSS智能手機[21]
    下載: 導(dǎo)出CSV

    表  2  源型密鑰生成步驟

    步驟功能方法目標
    共享隨機源獲取為密鑰生成提供密鑰源互易信道
    接收信號
    一致
    安全
    高效
    量化將共享隨機源量化為序列等概量化
    均勻量化
    雙門限量化
    矢量量化
    量化比特數(shù)量多
    量化誤比特率小
    量化序列隨機性好
    信息協(xié)商刪除或糾正錯誤比特Cascade方法
    糾錯編碼方法
    糾錯能力強
    協(xié)商效率高
    信息泄露少
    隱私放大保證密鑰安全性和隨機性私密信息抽取器
    通用Hash函數(shù)
    破解概率低于密鑰強度
    通過NIST測試
    下載: 導(dǎo)出CSV
  • 史光坤. LTE/SAE系統(tǒng)密鑰管理方案的研究與改進[D]. [博士論文], 吉林大學(xué), 2017.

    SHI Guangkun. The research and improvement of the key management schemes in LTE/SAE system[D]. [Ph. D. dissertation], Jilin University, 2017.
    雷新雨. 新型公開密鑰交換算法的理論與應(yīng)用研究[D]. [博士論文], 重慶大學(xué), 2015.

    LEI Xinyu. Research on theory and application of new-type public key exchange algorithms[D]. [Ph. D. dissertation], Chongqing University, 2015.
    GOKEY M. NSA GCHQ SIM card hack Snowden leak news[EB/OL]. https://www.digitaltrends.com/mobile/nsa-gchq-sim-card-hack-snowden-leak-news/, 2015.
    5G White Paper. 5G: Rethink mobile communications for 2020+[Z]. Future Forum 5G SIG, 2014.
    SHANNON C E. Communication theory of secrecy systems[J]. Bell System Technical Journal, 1949, 28(4): 656–715. doi: 10.1002/j.1538-7305.1949.tb00928.x
    WYNER A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8): 1355–1387. doi: 10.1002/j.1538-7305.1975.tb02040.x
    ZHANG Junqing, DUONG T Q, MARSHALL A, et al. Key generation from wireless channels: A review[J]. IEEE Access, 2016, 4: 614–626. doi: 10.1109/ACCESS.2016.2521718
    ZHANG Junqing, WOODS R, DUONG T Q, et al. Experimental study on key generation for physical layer security in wireless communications[J]. IEEE Access, 2016, 4: 4464–4477. doi: 10.1109/ACCESS.2016.2604618
    MAURER U M. Secret key agreement by public discussion from common information[J]. IEEE Transactions on Information Theory, 1993, 39(3): 733–742. doi: 10.1109/18.256484
    AHLSWEDE R and CSISZAR I. Common randomness in information theory and cryptography. I. Secret sharing[J]. IEEE Transactions on Information Theory, 1993, 39(4): 1121–1132. doi: 10.1109/18.243431
    HERSHEY J E, HASSAN A A, and YARLAGADDA R. Unconventional cryptographic keying variable management[J]. IEEE Transactions on Communications, 1995, 43(1): 3–6. doi: 10.1109/26.385951
    MARINO F, PAOLINI E, and CHIANI M. Secret key extraction from a UWB channel: Analysis in a real environment[C]. 2014 IEEE International Conference on Ultra-WideBand (ICUWB), Paris, France, 2014: 80–85. doi: 10.1109/ICUWB.2014.6958955.
    HUANG Jingjing and JIANG Ting. Dynamic secret key generation exploiting ultra-wideband wireless channel characteristics[C]. 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, USA, 2015: 1701–1706. doi: 10.1109/WCNC.2015.7127724.
    LIU Hongbo, WANG Yang, YANG Jie, et al. Fast and practical secret key extraction by exploiting channel response[C]. IEEE International Conference on Computer Communications (INFOCOM), Turin, Italy, 2013: 3048–3056. doi: 10.1109/INFCOM.2013.6567117.
    ZHANG Junqing, MARSHALL A, WOODS R, et al. Efficient key generation by exploiting randomness from channel responses of individual OFDM subcarriers[J]. IEEE Transactions on Communications, 2016, 64(6): 2578–2588. doi: 10.1109/TCOMM.2016.2552165
    MATHUR S, TRAPPE W, MANDAYAM N, et al. Radio-telepathy: Extracting a secret key from an unauthenticated wireless channel[C]. The 14th ACM International Conference on Mobile Computing and Networking, San Francisco, USA, 2008: 128–139. doi: 10.1145/1409944.1409960.
    ZENG Kai, WU D, CHAN An, et al. Exploiting multiple-antenna diversity for shared secret key generation in wireless networks[C]. 2010 Proceedings IEEE INFOCOM, San Diego, USA, 2010: 1–9. doi: 10.1109/INFCOM.2010.5462004.
    WEI Yunchuan, ZENG Kai, and MOHAPATRA P. Adaptive wireless channel probing for shared key generation based on PID controller[J]. IEEE Transactions on Mobile Computing, 2013, 12(9): 1842–1852. doi: 10.1109/TMC.2012.144
    HU Xiaoyan, JIN Liang, HUANG Kaizhi, et al. Physical layer secret key generation scheme based on signal propagation characteristics[J]. Acta Electronica Sinica, 2019, 47(2): 483–488. doi: 10.3969/j.issn.0372-2112.2019.02.032
    PREMNATH S N, GOWDA P L, KASERA S K, et al. Secret key extraction using bluetooth wireless signal strength measurements[C]. The 11th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Singapore, 2014: 293–301. doi: 10.1109/SAHCN.2014.6990365.
    CHEN Kan, NATARAJAN B B, and SHATTIL S. Secret key generation rate with power allocation in relay-based LTE-A networks[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(11): 2424–2434. doi: 10.1109/TIFS.2015.2462756
    HALPERIN D, HU Wenjun, SHETH A, et al. Tool release: Gathering 802.11n traces with channel state information[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(1): 53. doi: 10.1145/1925861.1925870
    NI. USRP E320 (ZYNQ-7045, 2X2, 70 MHZ-6 GHZ, Board Only)–Ettus Research[EB/OL]. https://www.yottavolt.com/shop/usrp-e320-zynq-7045-2x2-70-mhz-6-ghz-board-only-ettus-research/, 2020.
    Wiki. Wireless open-access research platform[EB/OL]. http://warpproject.org/trac/wiki/HardwarePlatform/, 2013.
    Crossbow Technology. MICAz datasheet[EB/OL]. http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf, 2011.
    MEMSC. TelosB datasheet[EB/OL]. http://www.willow.co.uk/TelosB_Datasheet.pdf, 2011.
    WUNDER G, FRITSCHEK R, and REAZ K. RECiP: Wireless channel reciprocity restoration method for varying transmission power[C]. The 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016: 1–5. doi: 10.1109/PIMRC.2016.7794581.
    LOU Yangming, JIN Liang, ZHONG Zhou, et al. Secret key generation scheme based on MIMO received signal spaces[J]. Scientia Sinica Informationis, 2017, 47(3): 362–373. doi: 10.1360/N112016-00001
    TAHA H and ALSUSA E. Secret key exchange using private random precoding in MIMO FDD and TDD systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(6): 4823–4833. doi: 10.1109/TVT.2016.2611565
    TAHA H and ALSUSA E. Secret key exchange under physical layer security using MIMO private random precoding in FDD systems[C]. 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016: 1–6. doi: 10.1109/ICC.2016.7511622.
    SHARIFIAN S, LIN Fuchun, and SAFAVI-NAINI R. Secret key agreement using a virtual wiretap channel[C]. IEEE Conference on Computer Communications (INFOCOM), Atlanta, USA, 2017: 1–9. doi: 10.1109/INFOCOM.2017.8057119.
    KHISTI A. Secret-key agreement over non-coherent block-fading channels with public discussion[J]. IEEE Transactions on Information Theory, 2016, 62(12): 7164–7178. doi: 10.1109/TIT.2016.2618861
    ZHANG Shengjun, JIN Ling, LOU Yangming, et al. Secret key generation based on two-way randomness for TDD-SISO system[J]. China Communications, 2018, 15(7): 202–216. doi: 10.1109/CC.2018.8424614
    WU Feilong, WANG Wenjie, WANG Huiming, et al. A unified mathematical model for spatial scrambling based secure wireless communication and its wiretap method[J]. Scientia Sinica Informationis, 2012, 42(4): 483–492. doi: 10.1360/112011-942
    HARRISON W K, ALMEIDA J, BLOCH M R, et al. Coding for secrecy: An overview of error-control coding techniques for physical-layer security[J]. IEEE Signal Processing Magazine, 2013, 30(5): 41–50. doi: 10.1109/MSP.2013.2265141
    NEGI R and GOEL S. Secret communication using artificial noise[C]. VTC-2005-Fall. The 62nd IEEE Vehicular Technology Conference, 2005, Dallas, USA, 2005: 1906–1910. doi: 10.1109/VETECF.2005.1558439.
    GOEL S and NEGI R. Guaranteeing secrecy using artificial noise[J]. IEEE Transactions on Wireless Communications, 2008, 7(6): 2180–2189. doi: 10.1109/TWC.2008.060848
    LI Xiaohua, HWU J, and RATAZZI E P. Array redundancy and diversity for wireless transmissions with low probability of interception[C]. 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 2006: 211–221. doi: 10.1109/ICASSP.2006.1661021.
    LI Xiaohua, HWU J, and RATAZZI E. Using antenna array redundancy and channel diversity for secure wireless transmissions[J]. Journal of Communications, 2007, 2(3): 24–32. doi: 10.4304/jcm.2.3.24-32
    FOUNTZOULAS Y, KOSTA A, and KARYSTINOS G N. Polar-code-based security on the BSC-modeled HARQ in fading[C]. The 23rd International Conference on Telecommunications (ICT), Thessaloniki, Greece, 2016: 1–5. doi: 10.1109/ICT.2016.7500449.
    ZHANG Yingxian, YANG Zhen, LIU Aijun, et al. Secure transmission over the wiretap channel using polar codes and artificial noise[J]. IET Communications, 2017, 11(3): 377–384. doi: 10.1049/iet-com.2016.0429
    BAI Huiqing, JIN Liang, and YI Ming. Artificial noise aided polar codes for physical layer security[J]. China Communications, 2017, 14(12): 15–24. doi: 10.1109/cc.2017.8246334
    TOPAL O A, KURT G K, and ?ZBEK B. Key error rates in physical layer key generation: Theoretical analysis and measurement-based verification[J]. IEEE Wireless Communications Letters, 2017, 6(6): 766–769. doi: 10.1109/LWC.2017.2740290
    ZHANG Junqing, RAJENDRAN S, SUN Zhi, et al. Physical layer security for the internet of things: Authentication and key generation[J]. IEEE Wireless Communications, 2019, 26(5): 92–98. doi: 10.1109/MWC.2019.1800455
    JIN Henglei, HUANG Kaizhi, XIAO Shuaifang, et al. A two-layer secure quantization algorithm for secret key generation with correlated eavesdropping channel[J]. IEEE Access, 2019, 7: 26480–26487. doi: 10.1109/access.2019.2893594
    JIAO Long, WANG Ning, WANG Pu, et al. Physical layer key generation in 5G wireless networks[J]. IEEE Wireless Communications, 2019, 26(5): 48–54. doi: 10.1109/MWC.001.1900061
    ZENG Kai. Physical layer key generation in wireless networks: Challenges and opportunities[J]. IEEE Communications Magazine, 2015, 53(6): 33–39. doi: 10.1109/MCOM.2015.7120014
    JIN Liang, ZHANG Shengjun, LOU Yangming, et al. Secret key generation with cross multiplication of two-way random signals[J]. IEEE Access, 2019, 7: 113065–113080. doi: 10.1109/access.2019.2935206
    LI Guyue, SUN Chen, ZHANG Junqing, et al. Physical layer key generation in 5G and beyond wireless communications: Challenges and opportunities[J]. Entropy, 2019, 21(5): 497. doi: 10.3390/e21050497
    CHEN Xuxing, HE Zunwen, ZHANG Yan, et al. A key generation scheme for wireless communication based on channel characteristics[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(5): 834–840. doi: 10.11805/TKYDA201705.0834
    QIN Dongrun and DING Zhi. Exploiting multi-antenna non-reciprocal channels for shared secret key generation[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(12): 2693–2705. doi: 10.1109/TIFS.2016.2594143
    LI Guyue, HU Aiqun, SUN Chen, et al. Constructing reciprocal channel coefficients for secret key generation in FDD systems[J]. IEEE Communications Letters, 2018, 22(12): 2487–2490. doi: 10.1109/LCOMM.2018.2875708
    LI Shanshan, CHENG Mengfan, DENG Lei, et al. Secure key distribution strategy in OFDM-PON by utilizing the redundancy of training symbol and digital chaos technique[J]. IEEE Photonics Journal, 2018, 10(2): 7201108. doi: 10.1109/jphot.2018.2815001
    ZHAO Jun. A survey of reconfigurable intelligent surfaces: Towards 6G wireless communication networks with massive MIMO 2.0[J]. arXiv, 2019, 1907.04789v1.
    DI RENZO M, DEBBAH M, PHAN-HUY D T, et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019(1): 129. doi: 10.1186/s13638-019-1438-9
  • 加載中
圖(5) / 表(2)
計量
  • 文章訪問數(shù):  2634
  • HTML全文瀏覽量:  1158
  • PDF下載量:  351
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2020-01-02
  • 修回日期:  2020-08-07
  • 網(wǎng)絡(luò)出版日期:  2020-08-21
  • 刊出日期:  2020-10-13

目錄

    /

    返回文章
    返回