一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

軟件定義無線接入網(wǎng)絡的組件化研究

徐海東 王江 易輝躍

徐海東, 王江, 易輝躍. 軟件定義無線接入網(wǎng)絡的組件化研究[J]. 電子與信息學報, 2021, 43(4): 1064-1071. doi: 10.11999/JEIT191049
引用本文: 徐海東, 王江, 易輝躍. 軟件定義無線接入網(wǎng)絡的組件化研究[J]. 電子與信息學報, 2021, 43(4): 1064-1071. doi: 10.11999/JEIT191049
Haidong XU, Jiang WANG, Huiyue YI. Research on Componentization of Software Defined Wireless Access Network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1064-1071. doi: 10.11999/JEIT191049
Citation: Haidong XU, Jiang WANG, Huiyue YI. Research on Componentization of Software Defined Wireless Access Network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1064-1071. doi: 10.11999/JEIT191049

軟件定義無線接入網(wǎng)絡的組件化研究

doi: 10.11999/JEIT191049
基金項目: 上海市自然科學基金(17ZR1428900),中國科學院創(chuàng)新基金(CXJJ-20S037)
詳細信息
    作者簡介:

    徐海東:男,1972年生,高級工程師,研究方向為軟件定義網(wǎng)絡、物聯(lián)網(wǎng)與蜂窩通信

    王江:男,1975年生,正高級工程師,研究方向為軟件定義網(wǎng)絡、物聯(lián)網(wǎng)與蜂窩通信

    易輝躍:男,1970年生,副研究員,研究方向為5G軟件定義終端、MIMO算法

    通訊作者:

    徐海東 haidong.xu@wico.sh

  • 中圖分類號: TN92

Research on Componentization of Software Defined Wireless Access Network

Funds: The Natural Science Foundation of Shanghai (17ZR1428900), The Innovation Foundation of Chinese Academy of Sciences (CXJJ-20S037)
  • 摘要: 針對5G通信技術高傳輸速率、多業(yè)務場景的挑戰(zhàn),該文提出一種組件化的軟件定義無線接入網(wǎng)絡新架構。該架構在5G接入網(wǎng)集中單元(CU),分布單元(DU),有源天線單元(AAU)架構的基礎上,進一步朝組件化方向演進,形成一種由集中控制單元(CCU), CU, DU,射頻單元(RU),AAU等組件化通信單元組成的新架構。這種新架構既有利于切片化、虛擬化實現(xiàn)無線接入網(wǎng),又有利于應用分布式計算技術和硬件加速技術突破通用處理器的計算能力瓶頸,還能降低DU與AAU之間的前傳壓力。該文還研制了基于此架構的組件化軟基站試驗原型并進行了測試,結果表明該組件化方案在提供高度靈活性的同時,還能夠提升通用處理器軟基站的吞吐能力,并有效降低遠端站址傳輸流量。
  • 圖  1  組件化、可切片的分布式軟基站架構

    圖  2  CU和DU拆分選項

    圖  3  DU和RU拆分選項

    圖  4  組件化的原型基站模塊圖

    圖  5  CU, DU和RU組件間流量測試結果

    表  1  拆分方案流量分析,以LTE單天線、正常循環(huán)前綴為例

    選項方向5 MB10 MB20 MB
    Option8上行、下行245.76 Mbps491.52 Mbps983.04 Mbps
    Option7.1上行、下行134.40 Mbps268.80 Mbps537.60 Mbps
    Option7.1a上行各信道解映射后的流量之和,與業(yè)務量有關,最大值與Option7.1相等
    Option7.2上行各信道估計之后、均衡之前的流量之和,包含信道估計信息,流量約為Option7.1a兩倍
    下行與應用層數(shù)據(jù)量有關,滿負荷時比Option7.1略小,不包括參考信號、下行同步信號
    Option7.3上行各信道解調(diào)后、譯碼前的流量之和,流量比Option7.1a略小
    下行各信道調(diào)制前的流量之和,與應用層數(shù)據(jù)流量相當
    下載: 導出CSV

    表  2  組件化與非組件化對比測試結果

    測試項目組件化(CU+DU+RU)非組件化
    上行傳輸(5 Mbps)時延抖動0.09 ms0.06 ms
    內(nèi)存消耗22.7%(CU 4.2% DU14.3% RU 4.2%)14.4%
    CPU占用率50.9%(CU 3.0% DU28.6% RU19.3%)38.3%
    下行傳輸(10 Mbps)時延抖動0.38 ms0.40 ms
    內(nèi)存消耗22.8%(CU 4.3% DU14.3% RU 4.2%)14.5%
    CPU占用率40.0%(CU 3.7% DU15.0% RU21.3%)26.6%
    下載: 導出CSV

    表  3  組件化C-RAN方案與CU-DU C-RAN方案比較(以10 Mbps下行傳輸為例)

    傳輸情況比較項目組件化C-RAN方案傳統(tǒng)CU-DU C-RAN方案優(yōu)勢倍數(shù)
    理想傳輸條件組網(wǎng)方案CU, DU和RU都部署在中心機房
    云資源池計算集中度100%1.00
    站址傳輸流量245.76 Mbps1.00
    非理想傳輸條件組網(wǎng)方案中心機房部署CU和DU遠端站址部署RU中心機房部署CU遠端站址部署DU
    云資源池計算集中度49.48%1.39%35.60
    站址傳輸流量15.5 Mbps11.5 Mbps1.35
    下載: 導出CSV
  • [1] I C L, HUANG Jinri, DUAN Ran, et al. Recent progress on C-RAN centralization and cloudification[J]. IEEE Access, 2014, 2: 1039. doi: 10.1109/ACCESS.2014.2351411
    [2] 王曉云, 黃宇紅, 崔春風, 等. C-RAN: 面向綠色的未來無線接入網(wǎng)演進[J]. 中國通信, 2010, 7(3): 107–112.

    WANG Xiaoyun, HUANG Yuhong, CUI Chunfeng, et al. C-RAN: Evolution toward green radio access network[J]. China Communications, 2010, 7(3): 107–112.
    [3] LIN Yonghua, SHAO Ling, ZHU Zhenbo, et al. Wireless network cloud: Architecture and system requirements[J]. IBM Journal of Research and Development, 2010, 54(1): 12. doi: 10.1147/JRD.2009.2037680
    [4] 田霖, 翟國偉, 黃亮, 等. 基于集中式接入網(wǎng)架構的異構無線網(wǎng)絡資源管理技術研究[J]. 電信科學, 2013, 29(6): 25–31. doi: 10.3969/j.issn.1000-0801.2013.06.004

    TIAN Lin, ZHAI Guowei, HUANG Liang, et al. Research on key technologies of heterogeneous wireless network resource management based on centralized radio access network architecture[J]. Telecommunications Science, 2013, 29(6): 25–31. doi: 10.3969/j.issn.1000-0801.2013.06.004
    [5] EURECOM. OpenAirInterface[EB/OL]. http://www.openairinterface.org, 2019.
    [6] Software Radio Systems. SRSLTE[EB/OL]. https://www.softwareradiosystems.com/products/#srslte, 2019.
    [7] 咸立文, 姚幽然, 趙揚. 基于開源SDR的LTE系統(tǒng)對比研究與實現(xiàn)[J]. 通信技術, 2018, 51(6): 1307–1314. doi: 10.3969/j.issn.1002-0802.2018.06.013

    XIAN Liwen, YAO Youran, and ZHAO Yang. Comparative research and implementation of LTE system based on open-source SDR[J]. Communications Technology, 2018, 51(6): 1307–1314. doi: 10.3969/j.issn.1002-0802.2018.06.013
    [8] WANG Jiang, XU Jing, YANG Yang, et al. GPP based open cellular network towards 5G[J]. China Communications, 2017, 14(6): 189–198. doi: 10.1109/CC.2017.7961374
    [9] 張海波, 荊昆侖, 劉開健, 等. 車聯(lián)網(wǎng)中一種基于軟件定義網(wǎng)絡與移動邊緣計算的卸載策略[J]. 電子與信息學報, 2020, 42(3): 645–652. doi: 10.11999/JEIT190304

    ZHANG Haibo, JING Kunlun, LIU Kaijian, et al. An offloading mechanism based on software defined network and mobile edge computing in vehicular networks[J]. Journal of Electronics &Information Technology, 2020, 42(3): 645–652. doi: 10.11999/JEIT190304
    [10] CHEN Shanzhi and KANG Shaoli. A tutorial on 5G and the progress in China[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(3): 309–321. doi: 10.1631/FITEE.1800070
    [11] CPRI. Common Public Radio Interface (CPRI) Specification (V6.0)[S]. CRPI, 2013.
    [12] 3GPP. TR 38.801 Study on new radio access technology: Radio access architecture and interfaces (Release 15)[S]. 3GPP, 2017.
    [13] Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporation, et al. eCPRI transport network V1.2[EB/OL]http://www.cpri.info/downloads/Requirements_for_the_eCPRI_Transport_Network_V1_2_2018_06_25.pdf, 2018.
    [14] China Mobile Research Institute. White paper of next generation fronthaul interface[EB/OL]. labs. chinamobile. com/cran, 2015.
    [15] I C L, LI Han, KORHONEN J, et al. RAN revolution with NGFI (xhaul) for 5G[J]. Journal of Lightwave Technology, 2018, 36(2): 541–550. doi: 10.1109/JLT.2017.2764924
    [16] I C L, HUANG Jinri, YUAN Yannan, et al. 5G RAN architecture: C-RAN with NGFI[M]. XIANG Wei, ZHENG Kan, and SHEN Xuemin. 5G Mobile Communications. Cham: Springer, 2017: 431–455. doi: 10.1007/978-3-319-34208-5_16.
    [17] 唐倫, 魏延南, 馬潤琳, 等. 虛擬化云無線接入網(wǎng)絡下基于在線學習的網(wǎng)絡切片虛擬資源分配算法[J]. 電子與信息學報, 2019, 41(7): 1533–1539. doi: 10.11999/JEIT180771

    TANG Lun, WEI Yannan, MA Runlin, et al. Online learning-based virtual resource allocation for network slicing in virtualized cloud radio access network[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1533–1539. doi: 10.11999/JEIT180771
    [18] NIU Binglai, ZHOU Yong, SHAH-MANSOURI H, et al. A dynamic resource sharing mechanism for cloud radio access networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8325–8338. doi: 10.1109/TWC.2016.2613896
    [19] KALIL M, Al-DWEIK A, SHARKH M F A, et al. A framework for joint wireless network virtualization and cloud radio access networks for next generation wireless networks[J]. IEEE Access, 2017, 5: 20814–20827. doi: 10.1109/ACCESS.2017.2746666
    [20] 3GPP. TS 23.501 System architecture for the 5G system (Release 15)[S]. 3GPP, 2017.
    [21] 施南翔, 宋月, 劉景磊, 等. 5G核心網(wǎng)標準化進展及B5G演進初探[J]. 移動通信, 2020, 44(1): 2–7. doi: 10.3969/j.issn.1006-1010.2020.01.001

    SHI Nanxiang, SONG Yue, LIU Jinglei, et al. Standardization progress of 5G core networks and research on beyond 5G evolution[J]. Mobile Communications, 2020, 44(1): 2–7. doi: 10.3969/j.issn.1006-1010.2020.01.001
    [22] 3GPP. TS 38.300 NR and NG-RAN overall description, stage 2 (Release 15)[S]. 3GPP, 2018.
    [23] 魏垚, 謝沛榮. 網(wǎng)絡切片標準分析與發(fā)展現(xiàn)狀[J]. 移動通信, 2019, 43(4): 25–30. doi: 10.3969/j.issn.1006-1010.2019.04.005

    WEI Yao and XIE Peirong. Network slicing standard analysis and development status[J]. Mobile Communications, 2019, 43(4): 25–30. doi: 10.3969/j.issn.1006-1010.2019.04.005
    [24] 劉珊, 韓瀟, 黃蓉. 面向5G的無線側網(wǎng)絡切片發(fā)展與研究[J]. 郵電設計技術, 2020(1): 45–49.

    LIU Shan, HAN Xiao, and HUANG Rong. Development and research of network slice for 5G RAN[J]. Designing Technioues of Posts and Telecommunications, 2020(1): 45–49.
    [25] BAHL L, COCKE J, JELINEK F, et al. Optimal decoding of linear codes for minimizing symbol error rate (Corresp.)[J]. IEEE Transactions on Information Theory, 1974, 20(2): 284–287.
    [26] FOSSORIER M P C, MIHALJEVIC M, and IMAI H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation[J]. IEEE Transactions on Communications, 1999, 47(5): 673–680. doi: 10.1109/26.768759
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數(shù):  1266
  • HTML全文瀏覽量:  565
  • PDF下載量:  64
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-12-30
  • 修回日期:  2021-01-05
  • 網(wǎng)絡出版日期:  2021-01-11
  • 刊出日期:  2021-04-20

目錄

    /

    返回文章
    返回