軟件定義無線接入網(wǎng)絡的組件化研究
doi: 10.11999/JEIT191049
-
1.
上海無線通信研究中心 上海 201899
-
2.
中國科學院上海微系統(tǒng)與信息技術研究所 上海 200050
Research on Componentization of Software Defined Wireless Access Network
-
1.
Shanghai Research Center for Wireless Communications, Shanghai 201899, China
-
2.
Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
-
摘要: 針對5G通信技術高傳輸速率、多業(yè)務場景的挑戰(zhàn),該文提出一種組件化的軟件定義無線接入網(wǎng)絡新架構。該架構在5G接入網(wǎng)集中單元(CU),分布單元(DU),有源天線單元(AAU)架構的基礎上,進一步朝組件化方向演進,形成一種由集中控制單元(CCU), CU, DU,射頻單元(RU),AAU等組件化通信單元組成的新架構。這種新架構既有利于切片化、虛擬化實現(xiàn)無線接入網(wǎng),又有利于應用分布式計算技術和硬件加速技術突破通用處理器的計算能力瓶頸,還能降低DU與AAU之間的前傳壓力。該文還研制了基于此架構的組件化軟基站試驗原型并進行了測試,結果表明該組件化方案在提供高度靈活性的同時,還能夠提升通用處理器軟基站的吞吐能力,并有效降低遠端站址傳輸流量。
-
關鍵詞:
- 軟件定義網(wǎng)絡 /
- 無線接入網(wǎng) /
- 組件化
Abstract: In view of the challenges of 5G communication technology with high speed and multiple service scenarios, this paper proposes a new component-based Software Defined wireless access Network (SDN) architecture. Based on the architecture of Centralized Unit (CU), Distributed Unit (DU) and Active Antenna Unit(AAU) in 5G access network, further component-based evolution is carried out to form a new architecture composed the communication units of Centralized Control Unit (CCU), CU, DU, Radio Unit(RU), and AAU. This new architecture is not only conducive to the realization of wireless access network with slicing and virtualization, but also conducive to the adoption of distributed computing technology and hardware accelerating technology to break through the processing bottleneck of general-purpose processor, and reduce the forward transmission pressure between DU and AAU. In this paper, a prototype of component-based soft base station is developed and tested. The results show that the component-based scheme can not only provide high flexibility, but also improve the processing capacity of the general processor soft base station and reduce effectively the traffic of remote stations.-
Key words:
- Software Defined Network(SDN) /
- Wireless access network /
- Componentization
-
表 1 拆分方案流量分析,以LTE單天線、正常循環(huán)前綴為例
選項 方向 5 MB 10 MB 20 MB Option8 上行、下行 245.76 Mbps 491.52 Mbps 983.04 Mbps Option7.1 上行、下行 134.40 Mbps 268.80 Mbps 537.60 Mbps Option7.1a 上行 各信道解映射后的流量之和,與業(yè)務量有關,最大值與Option7.1相等 Option7.2 上行 各信道估計之后、均衡之前的流量之和,包含信道估計信息,流量約為Option7.1a兩倍 下行 與應用層數(shù)據(jù)量有關,滿負荷時比Option7.1略小,不包括參考信號、下行同步信號 Option7.3 上行 各信道解調(diào)后、譯碼前的流量之和,流量比Option7.1a略小 下行 各信道調(diào)制前的流量之和,與應用層數(shù)據(jù)流量相當 下載: 導出CSV
表 2 組件化與非組件化對比測試結果
測試項目 組件化(CU+DU+RU) 非組件化 上行傳輸(5 Mbps) 時延抖動 0.09 ms 0.06 ms 內(nèi)存消耗 22.7%(CU 4.2% DU14.3% RU 4.2%) 14.4% CPU占用率 50.9%(CU 3.0% DU28.6% RU19.3%) 38.3% 下行傳輸(10 Mbps) 時延抖動 0.38 ms 0.40 ms 內(nèi)存消耗 22.8%(CU 4.3% DU14.3% RU 4.2%) 14.5% CPU占用率 40.0%(CU 3.7% DU15.0% RU21.3%) 26.6% 下載: 導出CSV
表 3 組件化C-RAN方案與CU-DU C-RAN方案比較(以10 Mbps下行傳輸為例)
傳輸情況 比較項目 組件化C-RAN方案 傳統(tǒng)CU-DU C-RAN方案 優(yōu)勢倍數(shù) 理想傳輸條件 組網(wǎng)方案 CU, DU和RU都部署在中心機房 云資源池計算集中度 100% 1.00 站址傳輸流量 245.76 Mbps 1.00 非理想傳輸條件 組網(wǎng)方案 中心機房部署CU和DU遠端站址部署RU 中心機房部署CU遠端站址部署DU 云資源池計算集中度 49.48% 1.39% 35.60 站址傳輸流量 15.5 Mbps 11.5 Mbps 1.35 下載: 導出CSV
-
[1] I C L, HUANG Jinri, DUAN Ran, et al. Recent progress on C-RAN centralization and cloudification[J]. IEEE Access, 2014, 2: 1039. doi: 10.1109/ACCESS.2014.2351411 [2] 王曉云, 黃宇紅, 崔春風, 等. C-RAN: 面向綠色的未來無線接入網(wǎng)演進[J]. 中國通信, 2010, 7(3): 107–112.WANG Xiaoyun, HUANG Yuhong, CUI Chunfeng, et al. C-RAN: Evolution toward green radio access network[J]. China Communications, 2010, 7(3): 107–112. [3] LIN Yonghua, SHAO Ling, ZHU Zhenbo, et al. Wireless network cloud: Architecture and system requirements[J]. IBM Journal of Research and Development, 2010, 54(1): 12. doi: 10.1147/JRD.2009.2037680 [4] 田霖, 翟國偉, 黃亮, 等. 基于集中式接入網(wǎng)架構的異構無線網(wǎng)絡資源管理技術研究[J]. 電信科學, 2013, 29(6): 25–31. doi: 10.3969/j.issn.1000-0801.2013.06.004TIAN Lin, ZHAI Guowei, HUANG Liang, et al. Research on key technologies of heterogeneous wireless network resource management based on centralized radio access network architecture[J]. Telecommunications Science, 2013, 29(6): 25–31. doi: 10.3969/j.issn.1000-0801.2013.06.004 [5] EURECOM. OpenAirInterface[EB/OL]. http://www.openairinterface.org, 2019. [6] Software Radio Systems. SRSLTE[EB/OL]. https://www.softwareradiosystems.com/products/#srslte, 2019. [7] 咸立文, 姚幽然, 趙揚. 基于開源SDR的LTE系統(tǒng)對比研究與實現(xiàn)[J]. 通信技術, 2018, 51(6): 1307–1314. doi: 10.3969/j.issn.1002-0802.2018.06.013XIAN Liwen, YAO Youran, and ZHAO Yang. Comparative research and implementation of LTE system based on open-source SDR[J]. Communications Technology, 2018, 51(6): 1307–1314. doi: 10.3969/j.issn.1002-0802.2018.06.013 [8] WANG Jiang, XU Jing, YANG Yang, et al. GPP based open cellular network towards 5G[J]. China Communications, 2017, 14(6): 189–198. doi: 10.1109/CC.2017.7961374 [9] 張海波, 荊昆侖, 劉開健, 等. 車聯(lián)網(wǎng)中一種基于軟件定義網(wǎng)絡與移動邊緣計算的卸載策略[J]. 電子與信息學報, 2020, 42(3): 645–652. doi: 10.11999/JEIT190304ZHANG Haibo, JING Kunlun, LIU Kaijian, et al. An offloading mechanism based on software defined network and mobile edge computing in vehicular networks[J]. Journal of Electronics &Information Technology, 2020, 42(3): 645–652. doi: 10.11999/JEIT190304 [10] CHEN Shanzhi and KANG Shaoli. A tutorial on 5G and the progress in China[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(3): 309–321. doi: 10.1631/FITEE.1800070 [11] CPRI. Common Public Radio Interface (CPRI) Specification (V6.0)[S]. CRPI, 2013. [12] 3GPP. TR 38.801 Study on new radio access technology: Radio access architecture and interfaces (Release 15)[S]. 3GPP, 2017. [13] Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporation, et al. eCPRI transport network V1.2[EB/OL]http://www.cpri.info/downloads/Requirements_for_the_eCPRI_Transport_Network_V1_2_2018_06_25.pdf, 2018. [14] China Mobile Research Institute. White paper of next generation fronthaul interface[EB/OL]. labs. chinamobile. com/cran, 2015. [15] I C L, LI Han, KORHONEN J, et al. RAN revolution with NGFI (xhaul) for 5G[J]. Journal of Lightwave Technology, 2018, 36(2): 541–550. doi: 10.1109/JLT.2017.2764924 [16] I C L, HUANG Jinri, YUAN Yannan, et al. 5G RAN architecture: C-RAN with NGFI[M]. XIANG Wei, ZHENG Kan, and SHEN Xuemin. 5G Mobile Communications. Cham: Springer, 2017: 431–455. doi: 10.1007/978-3-319-34208-5_16. [17] 唐倫, 魏延南, 馬潤琳, 等. 虛擬化云無線接入網(wǎng)絡下基于在線學習的網(wǎng)絡切片虛擬資源分配算法[J]. 電子與信息學報, 2019, 41(7): 1533–1539. doi: 10.11999/JEIT180771TANG Lun, WEI Yannan, MA Runlin, et al. Online learning-based virtual resource allocation for network slicing in virtualized cloud radio access network[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1533–1539. doi: 10.11999/JEIT180771 [18] NIU Binglai, ZHOU Yong, SHAH-MANSOURI H, et al. A dynamic resource sharing mechanism for cloud radio access networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8325–8338. doi: 10.1109/TWC.2016.2613896 [19] KALIL M, Al-DWEIK A, SHARKH M F A, et al. A framework for joint wireless network virtualization and cloud radio access networks for next generation wireless networks[J]. IEEE Access, 2017, 5: 20814–20827. doi: 10.1109/ACCESS.2017.2746666 [20] 3GPP. TS 23.501 System architecture for the 5G system (Release 15)[S]. 3GPP, 2017. [21] 施南翔, 宋月, 劉景磊, 等. 5G核心網(wǎng)標準化進展及B5G演進初探[J]. 移動通信, 2020, 44(1): 2–7. doi: 10.3969/j.issn.1006-1010.2020.01.001SHI Nanxiang, SONG Yue, LIU Jinglei, et al. Standardization progress of 5G core networks and research on beyond 5G evolution[J]. Mobile Communications, 2020, 44(1): 2–7. doi: 10.3969/j.issn.1006-1010.2020.01.001 [22] 3GPP. TS 38.300 NR and NG-RAN overall description, stage 2 (Release 15)[S]. 3GPP, 2018. [23] 魏垚, 謝沛榮. 網(wǎng)絡切片標準分析與發(fā)展現(xiàn)狀[J]. 移動通信, 2019, 43(4): 25–30. doi: 10.3969/j.issn.1006-1010.2019.04.005WEI Yao and XIE Peirong. Network slicing standard analysis and development status[J]. Mobile Communications, 2019, 43(4): 25–30. doi: 10.3969/j.issn.1006-1010.2019.04.005 [24] 劉珊, 韓瀟, 黃蓉. 面向5G的無線側網(wǎng)絡切片發(fā)展與研究[J]. 郵電設計技術, 2020(1): 45–49.LIU Shan, HAN Xiao, and HUANG Rong. Development and research of network slice for 5G RAN[J]. Designing Technioues of Posts and Telecommunications, 2020(1): 45–49. [25] BAHL L, COCKE J, JELINEK F, et al. Optimal decoding of linear codes for minimizing symbol error rate (Corresp.)[J]. IEEE Transactions on Information Theory, 1974, 20(2): 284–287. [26] FOSSORIER M P C, MIHALJEVIC M, and IMAI H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation[J]. IEEE Transactions on Communications, 1999, 47(5): 673–680. doi: 10.1109/26.768759 -