一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于機器學習主用戶發(fā)射模式分類的蜂窩認知無線電網(wǎng)絡頻譜感知

申濱 王欣 陳思吉 崔太平

申濱, 王欣, 陳思吉, 崔太平. 基于機器學習主用戶發(fā)射模式分類的蜂窩認知無線電網(wǎng)絡頻譜感知[J]. 電子與信息學報, 2021, 43(1): 92-100. doi: 10.11999/JEIT191012
引用本文: 申濱, 王欣, 陳思吉, 崔太平. 基于機器學習主用戶發(fā)射模式分類的蜂窩認知無線電網(wǎng)絡頻譜感知[J]. 電子與信息學報, 2021, 43(1): 92-100. doi: 10.11999/JEIT191012
Bin SHEN, Xin WANG, Siji CHEN, Taiping CUI. Machine Learning Based Primary User Transmit Mode Classification for Spectrum Sensing in Cellular Cognitive Radio Network[J]. Journal of Electronics & Information Technology, 2021, 43(1): 92-100. doi: 10.11999/JEIT191012
Citation: Bin SHEN, Xin WANG, Siji CHEN, Taiping CUI. Machine Learning Based Primary User Transmit Mode Classification for Spectrum Sensing in Cellular Cognitive Radio Network[J]. Journal of Electronics & Information Technology, 2021, 43(1): 92-100. doi: 10.11999/JEIT191012

基于機器學習主用戶發(fā)射模式分類的蜂窩認知無線電網(wǎng)絡頻譜感知

doi: 10.11999/JEIT191012
基金項目: 國家自然科學基金(61571073)
詳細信息
    作者簡介:

    申濱:男,1978年生,教授,研究方向為大規(guī)模MIMO系統(tǒng)、認知無線電等

    王欣:女,1992年生,碩士生,研究方向為認知無線電

    陳思吉:男,1993年生,碩士生,研究方向為認知無線電

    崔太平:男,1981年生,講師,研究方向為認知無線電、車聯(lián)網(wǎng)等

    通訊作者:

    申濱 shenbin@cqupt.edu.cn

  • 1) 在CCRN中,由于SUE與其周圍的多個蜂窩基站之間的無線鏈接,假設SUE的位置信息能夠通過相應的定位方法較為精確地獲得。
  • 中圖分類號: TN911

Machine Learning Based Primary User Transmit Mode Classification for Spectrum Sensing in Cellular Cognitive Radio Network

Funds: The National Nature Science Foundation of China (61571073)
  • 摘要:

    近年來,基于機器學習(ML)的頻譜感知技術(shù)為認知無線電系統(tǒng)提供了新型的頻譜狀態(tài)監(jiān)測解決方案。利用蜂窩認知無線電網(wǎng)絡(CCRN)中的次級用戶設備(SUE)所能提供的大量頻譜觀測數(shù)據(jù),該文提出了一種基于主用戶(PU)傳輸模式分類的頻譜感知方案。首先,基于多種典型的ML算法,對于網(wǎng)絡中的多個主用戶發(fā)射機(PUT)的傳輸模式進行分類辨識,在網(wǎng)絡整體層面上確定所有PUT的聯(lián)合工作狀態(tài)。然后,網(wǎng)絡中的SUE根據(jù)其所處地理位置或者頻譜觀測數(shù)據(jù),判斷其在當前已判定的PUT發(fā)射模式下接入授權(quán)頻譜的可能性。由于PUT在網(wǎng)絡中的實際位置可能事先已知或者無法提前確定,該文給出了3種不同的處理方法。理論推導與實驗結(jié)果表明,所提方案與傳統(tǒng)的能量檢測方案相比,不僅改善了頻譜感知性能,還增加了蜂窩認知網(wǎng)絡對于授權(quán)頻譜的動態(tài)訪問機會。該方案可以作為蜂窩認知無線電網(wǎng)絡中的一種高效實用的頻譜感知解決方案。

  • 圖  1  仿真場景圖

    圖  2  PUT數(shù)量已知時,其傳輸模式分類準確率

    圖  3  傳輸功率43 dBm時,8種PUT傳輸模式下網(wǎng)格標簽圖

    圖  4  PUT傳輸功率為43 dBm時,網(wǎng)格分類性能

    算法1 基于能量值模板差值的PUT模式分類
     輸入:${{{Y}}_m},\widehat {{Y}},G,$閾值$\varphi $
     輸出:${\hat {{S}}^{(m)} }$
     初始化
     (1)  ${{{y}}_{m,1} } = {\rm{vec} }({{{Y}}_m})$%矩陣轉(zhuǎn)化為列向量
     (2)  ${{{y}}_{m,2} } = {\rm{sort} }({{{y}}_{m,1} },{\rm{descending} })$%降序排列
     (3)     ${\rm{ = \{ }}{Z_{{x_1},{y_1}}},{Z_{{x_2},{y_2}}}, \cdots ,{Z_{{x_Q},{y_Q}}}\} $
     (4)   獲取行位置索引向量 ${{x}}{\rm{ = \{ } }{x_1}{\rm{,} }{x_2}{\rm{,} } ··· {\rm{,} }{x_Q}{\rm{\} } }$及
     (5)     列位置索引向量 ${{y}}{\rm{ = \{ } }{y_1}{\rm{,} }{y_2}{\rm{,} } ··· {\rm{,} }{y_Q}{\rm{\} } }$
     (6)    IF$({Z_{ {x_1},{y_1} } } < \varphi )\& ({Z_{ {x_2},{y_2} } } < \varphi )\& ··· \& ({Z_{ {x_G},{y_G} } } < \varphi )$
     (7)     ${\hat {{S}}^{(m)} } = {\mathbb{S}_0}$
     (8)    Else
     (9)     For $i = 1:1:G$
     (10)      For $j = i + 1:1:G$
     (11)       If $(\left| {{x_i} - {x_j}} \right| < g)\& (\left| {{y_i} - {y_j}} \right| < g)$
     (12)        ${Z_{{x_j},{y_j}}} = 0$
     (13)       EndIF
     (14)      EndFor
     (15)     EndFor
     (16)    EndIF
     (17) For $i = 1:1:G$
     (18)     ${{{h}}_{\rm{1} } }(i) = {\rm{find} }({x_i}\left| { {Z_{ {x_i},{y_i} } } \ne 0} \right.)$
     (19)     ${{{h}}_{\rm{2} } }(i) = {\rm{find} }({y_i}\left| { {Z_{ {x_i},{y_i} } } \ne 0} \right.)$
     (20) EndFor
     (21) ${\varDelta _l} = \displaystyle\sum\limits_{i = 1}^{\left| { {h_1} } \right|} {|{ {{Y} }_m}({ {{h} }_1}(i),{ {{h} }_2}(i)) - { {{Y} }_l}({ {{h} }_1}(i),{ {{h} }_2}(i))|}$
     (22) ${l_{ {\rm{opt} } } } = \mathop {\arg \min }\limits_{l = 1,2, \cdots ,{2^N} - 1} {\varDelta _l}$
     輸出:${\hat {{S}}^{(m)} } = {\mathbb{S}_{ {l_{ {\rm{opt} } } } } }$
     注:${\rm{|} }{{{h}}_1}{\rm{|} }$為集合${{{h}}_1}$的勢,即其所包含的所有元素的個數(shù)。
    下載: 導出CSV

    表  1  CNN分類算法采用的結(jié)構(gòu)參數(shù)

    層類型輸入尺寸濾波器尺寸激活函數(shù)
    卷積層(1)120×1203×3×32ReLu
    卷積層(2)60×603×3×64ReLu
    全連接層14400×11024個神經(jīng)元Softmax
    下載: 導出CSV

    表  2  PUT傳輸功率為32 dBm時,PUT傳輸模式分類準確率

    算法名稱數(shù)據(jù)充分性條件
    11.1%47.4%100%
    能量值模板差值0.120.260.28
    K-means0.420.430.44
    HOG+SVM_8*80.120.160.17
    HOG+SVM_16*160.120.120.18
    CNN0.620.960.99
    下載: 導出CSV
  • ALI A and HAMOUDA W. Advances on spectrum sensing for cognitive radio networks: Theory and applications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 1277–1304. doi: 10.1109/COMST.2016.2631080
    AXELL E, LEUS G, LARSSON E G, et al. Spectrum sensing for cognitive radio: State-of-the-art and recent advances[J]. IEEE Signal Processing Magazine, 2012, 29(3): 101–116. doi: 10.1109/msp.2012.2183771
    黃河, 袁超偉. 基于動態(tài)自適應雙門限能量檢測的序貫協(xié)作頻譜感知算法[J]. 電子與信息學報, 2018, 40(5): 1037–1043. doi: 10.11999/JEIT170731

    HUANG He and YUAN Chaowei. A sequential cooperative spectrum sensing algorithm based on dynamic adaptive double-threshold energy detection[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1037–1043. doi: 10.11999/JEIT170731
    KIM J and CHOI J P. Sensing coverage-based cooperative spectrum detection in cognitive radio networks[J]. IEEE Sensors Journal, 2019, 19(13): 5325–5332. doi: 10.1109/JSEN.2019.2903408
    申濱, 王志強, 青晗. 基于次用戶功率控制輔助的合作頻譜感知[J]. 電子與信息學報, 2018, 40(10): 2337–2344. doi: 10.11999/JEIT171232

    SHEN Bin, WANG Zhiqiang, and QING Han. Secondary user power control aided cooperative spectrum sensing[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2337–2344. doi: 10.11999/JEIT171232
    MAUWA H, BAGULA A, ZENNARO M, et al. Systematic analysis of geo-location and spectrum sensing as access methods to TV white space[J]. Journal of ICT Standardization, 2016, 4(2): 147–176. doi: 10.13052/jicts2245-800X.423
    陳思吉, 王欣, 申濱. 一種基于支持向量機的認知無線電頻譜感知方案[J]. 重慶郵電大學學報: 自然科學版, 2019, 31(3): 313–322. doi: 10.3979/j.issn.1673-825X.2019.03.005

    CHEN Siji, WANG Xin, and SHEN Bin. A support vector machine based spectrum sensing for cognitive radios[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2019, 31(3): 313–322. doi: 10.3979/j.issn.1673-825X.2019.03.005
    THILINA K M, CHOI K W, SAQUIB N, et al. Machine learning techniques for cooperative spectrum sensing in cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(11): 2209–2221. doi: 10.1109/jsac.2013.131120
    AWE O P and LAMBOTHARAN S. Cooperative spectrum sensing in cognitive radio networks using multi-class support vector machine algorithms[C]. The 9th International Conference on Signal Processing and Communication Systems, Cairns, Australia, 2015: 1–7. doi: 10.1109/ICSPCS.2015.7391780.
    LI Zan, WU Wen, LIU Xiangli, et al. Improved cooperative spectrum sensing model based on machine learning for cognitive radio networks[J]. IET Communications, 2018, 12(19): 2485–2492. doi: 10.1049/iet-com.2018.5245
    LU Yingqi, ZHU Pai, WANG Donglin, et al. Machine learning techniques with probability vector for cooperative spectrum sensing in cognitive radio networks[C]. s2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 2016: 1–6. doi: 10.1109/WCNC.2016.7564840.
    CHEN Siji, SHEN Bin, WANG Xin, et al. A strong machine learning classifier and decision stumps based hybrid adaboost classification algorithm for cognitive radios[J]. Sensors, 2019, 19(23): 5077. doi: 10.3390/s19235077
    WEI Zhiqing, FENG Zhiyong, ZHANG Qixun, et al. Three regions for space-time spectrum sensing and access in cognitive radio networks[C]. 2012 IEEE Global Communications Conference, Anaheim, USA, 2012: 1283–1288. doi: 10.1109/GLOCOM.2012.6503290.
    阮麗華, 李勇, 程偉. 一種空時二維聯(lián)合頻譜感知區(qū)域劃分方案[J]. 系統(tǒng)工程與電子技術(shù), 2016, 38(5): 1146–1152. doi: 10.3969/j.issn.1001-506X.2016.05.27

    RUAN Lihau, LI Yong, and CHENG Wei. Novel region division approach for joint space-time spectrum 2-dimensions sensing in cognitive radio[J]. Systems Engineering and Electronics, 2016, 38(5): 1146–1152. doi: 10.3969/j.issn.1001-506X.2016.05.27
    SINGH G and CHHABRA I. Effective and fast face recognition system using complementary OC-LBP and HOG feature descriptors with SVM classifier[J]. Journal of Information Technology Research, 2018, 11(1): 91–110. doi: 10.4018/JITR.2018010106
    DADI H S, PILLUTLA G K M, and MAKKENA M L. Face recognition and human tracking using GMM, HOG and SVM in surveillance videos[J]. Annals of Data Science, 2018, 5(2): 157–179. doi: 10.1007/s40745-017-0123-2
    MERCHANT K, REVAY S, STANTCHEV G, et al. Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 160–167. doi: 10.1109/JSTSP.2018.2796446
  • 加載中
圖(4) / 表(3)
計量
  • 文章訪問數(shù):  1468
  • HTML全文瀏覽量:  353
  • PDF下載量:  117
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-12-19
  • 修回日期:  2020-03-17
  • 網(wǎng)絡出版日期:  2020-09-16
  • 刊出日期:  2021-01-15

目錄

    /

    返回文章
    返回