一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于稀疏感知有序干擾消除的大規(guī)模機器類通信系統(tǒng)多用戶檢測

申濱 吳和彪 趙書鋒 崔太平

申濱, 吳和彪, 趙書鋒, 崔太平. 基于稀疏感知有序干擾消除的大規(guī)模機器類通信系統(tǒng)多用戶檢測[J]. 電子與信息學(xué)報, 2020, 42(12): 2960-2968. doi: 10.11999/JEIT190994
引用本文: 申濱, 吳和彪, 趙書鋒, 崔太平. 基于稀疏感知有序干擾消除的大規(guī)模機器類通信系統(tǒng)多用戶檢測[J]. 電子與信息學(xué)報, 2020, 42(12): 2960-2968. doi: 10.11999/JEIT190994
Bin SHEN, Hebiao WU, Shufeng ZHAO, Taiping CUI. Sparsity-aware Ordered Successive Interference Cancellation Based Multi-user Detection for Uplink mMTC[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2960-2968. doi: 10.11999/JEIT190994
Citation: Bin SHEN, Hebiao WU, Shufeng ZHAO, Taiping CUI. Sparsity-aware Ordered Successive Interference Cancellation Based Multi-user Detection for Uplink mMTC[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2960-2968. doi: 10.11999/JEIT190994

基于稀疏感知有序干擾消除的大規(guī)模機器類通信系統(tǒng)多用戶檢測

doi: 10.11999/JEIT190994
基金項目: 國家重大研發(fā)計劃(2017YFE0118900),歐盟H2020項目(734798)
詳細信息
    作者簡介:

    申濱:男,1978年生,教授,研究方向為認知無線電、大規(guī)模MIMO等

    吳和彪:男,1994年生,碩士生,研究方向為大規(guī)模機器類系統(tǒng)多用戶檢測

    趙書鋒:男,1991年生,碩士生,研究方向為大規(guī)模MIMO系統(tǒng)信號檢測

    崔太平:男,1981年生,講師,研究方向為認知無線電、車聯(lián)網(wǎng)

    通訊作者:

    申濱 shenbin@cqupt.edu.cn

  • 中圖分類號: TN929.5

Sparsity-aware Ordered Successive Interference Cancellation Based Multi-user Detection for Uplink mMTC

Funds: The National Key R&D Program of China (2017YFE0118900), The EU H2020 Project (734798)
  • 摘要:

    在大規(guī)模機器類通信(mMTC)系統(tǒng)中,以用戶活躍性為先驗信息,接收機可以基于稀疏感知最大后驗概率(S-MAP)準則來檢測多用戶信號。為了降低S-MAP檢測的計算復(fù)雜度,基于干擾消除的思想,該文提出一種改進的活躍性感知有序正交三角分解(IA-SQRD)算法,以適用于mMTC系統(tǒng)上行鏈路多用戶信號檢測。IA-SQRD算法將傳統(tǒng)的活躍性感知有序正交三角分解(A-SQRD)算法的最終解作為初始解,并額外增加迭代干擾消除操作,以進一步提高檢測性能。此外,利用與改進A-SQRD算法相似的思路,該文對稀疏感知串行干擾消除(SA-SIC)、有序正交三角分解(SQRD)及數(shù)據(jù)相關(guān)的排序和正則化(DDS)算法亦進行了改進設(shè)計,分別獲得了相應(yīng)的改進型算法,即ISA-SIC、I-SQRD及I-DDS算法。仿真結(jié)果表明:相對于A-SQRD算法,在未顯著增加計算復(fù)雜度的情況下,在系統(tǒng)誤比特率(BER)為

    \begin{document}$2.5 \times {10^{ - 2}}$\end{document}

    時,該文所提IA-SQRD算法可取得3 dB性能增益;并且,對于不同的活躍概率或擴頻序列長度等參數(shù)配置下的mMTC系統(tǒng),IA-SQRD算法相對于其它算法均表現(xiàn)出更優(yōu)良的多用戶檢測性能。

  • 圖  1  在[0.1 0.3]區(qū)間中隨機均勻分布的用戶活躍概率

    圖  2  BER性能對比,$64 \times 128$配置

    圖  3  BER性能對比,$128 \times 256$配置

    圖  4  不同用戶活躍概率對應(yīng)的BER性能

    圖  5  不同擴頻序列長度對應(yīng)的BER性能

    表  1  改進型活躍性感知有序正交三角分解(IA-SQRD)檢測算法

     輸入:${y}$, ${H}$, ${{A}_0}$, ${\rm{\sigma }}_w^2$,$\left\{ {{p_n}} \right\}_{n = 1}^N$
     輸出:${{\bar s}^{{T_{{\rm{iter}}}}}}$(${T_{{\rm{iter}}}}$為迭代次數(shù))
     (1) ${{\rm{\lambda }}_n} = \ln [(1 - {p_n})/({p_n}/\left| {A} \right|)]$
     (2) ${{y}_0} = [{y};{\bf{0}_N}]$, ${Q} = [{H};{{\rm{\sigma }}_w}{\rm{diag}}\left( {\sqrt {{\lambda }} } \right)]$, ${R} = {{{\textit{0}}}_{N \times N}}$, ${P} = {{I}_N}$
     (3) for $n = 1,2, \cdots ,N$ do
     (4) ${n_{\min } } = \arg {\min _{j = n,n + 1, ··· ,N} }{\left\| { {{q}_j} } \right\|^2}$
     (5) 交換${Q}$, ${R}$和${P}$中的$n$和${n_{\min }}$列
     (6) ${R_{nn}} = \left\| {{{q}_n}} \right\|$,${{q}_n} = {{q}_n}/{R_{nn}}$
     (7) for $j = n + 1, ···,N - 1,N$ do
     (8) ${R_{nj}} = {q}_n^{\rm{H}}{{q}_j}$, ${{q}_j} = {{q}_j} - {R_{nj}}{{q}_n}$
     (9) end for
     (10) end for
     (11) ${{\tilde y}_0} = {{Q}^{\rm{H}}}{{y}_0}$
     (12) for $n = N,N - 1, ··· ,1$ do
     (13) $x_n' = \left({\tilde y_{0,n} } - \displaystyle\sum\limits_{l = n + 1}^N { {R_{nl} } } {\hat x_l}\right)/{R_{nn} }$
     (14) ${\hat x_n} = {Q_{{{A}_0}}}({x_{n'}})$
     (15) end for
     (16) $\hat{ x} = \hat{ x}{{P}^{\rm{H}}}$
     (17) ${s} = \hat{ x}$
     (18) ${G} = {{H}^{\rm{H}}}{H}$, $ = {{H}^{\rm{H}}}{y}$
     (19) for $t = 1:{T_{{\rm{iter}}}}$
     (20) for $n = 1:N$
     (21) $\hat s_n^{(t)} = \hat s_n^{(t - 1)} + \dfrac{ { {b_n} - \displaystyle\sum\limits_{j = 1}^N { {G_{nj} }\hat s_j^{(t - 1)} } } }{ { {G_{nn} } } }$
     (22) $\bar s_n^{(t)} = {Q_{{{A}_0}}}(\hat s_n^{(t)})$
     (23) end for
     (24) end for
    下載: 導(dǎo)出CSV

    表  2  計算復(fù)雜度比較(復(fù)數(shù)浮點運算次數(shù))

    $M$$N$SQRDA-SQRDI-SQRDIA-SQRD
    $16$$32$$3.4 \times {10^4}$$1.0 \times {10^5}$$5.5 \times {10^4}$$1.2 \times {10^5}$
    $32$$64$$2.7 \times {10^5}$$7.9 \times {10^5}$$4.2 \times {10^5}$$9.4 \times {10^5}$
    $64$$128$$2.1 \times {10^6}$$6.3 \times {10^6}$$3.2 \times {10^6}$$7.4 \times {10^6}$
    下載: 導(dǎo)出CSV
  • DAWY Z, SAAD W, GHOSH A, et al. Toward massive machine type cellular communications[J]. IEEE Wireless Communications, 2017, 24(1): 120–128. doi: 10.1109/MWC.2016.1500284WC
    GHAVIMI F and CHEN H H. M2M communications in 3GPP LTE/LTE-A networks: Architectures, service requirements, challenges, and applications[J]. IEEE Communications Surveys & Tutorials, 2015, 17(2): 525–549. doi: 10.1109/COMST.2014.2361626
    SHIM B and SONG B. Multiuser detection via compressive sensing[J]. IEEE Communications Letters, 2012, 16(7): 972–974. doi: 10.1109/LCOMM.2012.050112.111980
    CHOI J W, SHIM B, DING Yacong, et al. Compressed sensing for wireless communications: useful tips and tricks[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1527–1550. doi: 10.1109/COMST.2017.2664421
    ZHU Hao and GIANNAKIS G B. Exploiting sparse user activity in multiuser detection[J]. IEEE Transactions on Communications, 2011, 59(2): 454–465. doi: 10.1109/TCOMM.2011.121410.090570
    BARIK S and VIKALO H. Sparsity-aware sphere decoding: algorithms and complexity analysis[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2212–2225. doi: 10.1109/TSP.2014.2307836
    KNOOP B, MONSEES F, BOCKELMANN C, et al. Compressed sensing K-best detection for sparse multi-user communications[C]. The 22nd European Signal Processing Conference, Lisbon, Portugal, 2014: 1726–1730.
    ZHANG Xiaoxu, LIANG Yingchang, and FANG Jun. Novel Bayesian inference algorithms for multiuser detection in M2M communications[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 7833–7848. doi: 10.1109/TVT.2017.2692776
    ZHANG Xiaoxu, LABEAU F, LIANG Yingchang, et al. Compressive sensing-based multiuser detection via iterative reweighed approach in M2M communications[J]. IEEE Wireless Communications Letters, 2018, 7(5): 764–767. doi: 10.1109/LWC.2018.2820704
    JEONG B K, SHIM B, and LEE K B. MAP-based active user and data detection for massive machine-type communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8481–8494. doi: 10.1109/TVT.2018.2849621
    DI RENNA R B and DE LAMARE R C. Activity-aware multiple feedback SIC for massive machine-type communications[C]. The 12th International ITG Conference on Systems, Communications and Coding, Rostock, Germany, 2019: 233–238.
    丁子哲, 張賢達. 基于串行干擾消除的V-BLAST檢測[J]. 電子學(xué)報, 2007, 35(S1): 19–24.

    DING Zizhe and ZHANG Xianda. V-BLAST detection based on successive interference cancellation[J]. Acta Electronica Sinica, 2007, 35(S1): 19–24.
    KNOOP B, MONSEES F, BOCKELMANN C, et al. Sparsity-aware successive interference cancellation with practical constraints[C]. The 17th International ITG Workshop on Smart Antennas, Stuttgart, Germany, 2013: 1–8.
    LIU Yi, YUEN C, CAO Xianghui, et al. Design of a scalable hybrid MAC protocol for heterogeneous M2M networks[J]. IEEE Internet of Things Journal, 2014, 1(1): 99–111. doi: 10.1109/JIOT.2014.2310425
    AHN J, SHIM B, and LEE K B. Sparsity-aware ordered successive interference cancellation for massive machine-type communications[J]. IEEE Wireless Communications Letters, 2018, 7(1): 134–137. doi: 10.1109/LWC.2017.2760831
    YANG Zhaohui, CHEN Ming, PAN Yijin, et al. Asynchronous detection for machine-to-machine systems with code division multiple access[C]. The 9th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2017.
    YANG Zhaohui, CHEN Ming, WANG Yinlu, et al. Compressive sensing based multiuser detection for asynchronous machine-to-machine systems[C]. The 9th International Conference on Wireless Communications and Signal Processing, Nanjing, China, 2017.
    BJ?RCK ?. Numerics of gram-schmidt orthogonalization[J]. Linear Algebra and Its Applications, 1994, 197/198: 297–316. doi: 10.1016/0024-3795(94)90493-6
    MANDLOI M and BHATIA V. Low-complexity near-optimal iterative sequential detection for uplink massive MIMO systems[J]. IEEE Communications Letters, 2017, 21(3): 568–571. doi: 10.1109/LCOMM.2016.2637366
    申濱, 吳和彪, 崔太平, 等. 基于最優(yōu)索引廣義正交匹配追蹤的非正交多址系統(tǒng)多用戶檢測[J]. 電子與信息學(xué)報, 2020, 42(3): 621–628. doi: 10.11999/JEIT190270

    SHEN Bin, WU Hebiao, CUI Taiping, et al. An optimal number of indices aided gOMP algorithm for multi-user detection in NOMA system[J]. Journal of Electronics &Information Technology, 2020, 42(3): 621–628. doi: 10.11999/JEIT190270
    申濱, 趙書鋒, 金純. 基于迭代并行干擾消除的低復(fù)雜度大規(guī)模MIMO信號檢測算法[J]. 電子與信息學(xué)報, 2018, 40(12): 2970–2978. doi: 10.11999/JEIT180111

    SHEN Bin, ZHAO Shufeng, and JIN Chun. Low complexity iterative parallel interference cancellation detection algorithms for massive MIMO systems[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2970–2978. doi: 10.11999/JEIT180111
  • 加載中
圖(5) / 表(2)
計量
  • 文章訪問數(shù):  1653
  • HTML全文瀏覽量:  587
  • PDF下載量:  60
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-12-13
  • 修回日期:  2020-06-23
  • 網(wǎng)絡(luò)出版日期:  2020-07-18
  • 刊出日期:  2020-12-08

目錄

    /

    返回文章
    返回