無線自組織網(wǎng)絡(luò)的聯(lián)合安全路由選擇和功率優(yōu)化算法
doi: 10.11999/JEIT190909
-
西安理工大學(xué)自動化與信息工程學(xué)院 西安 710048
Joint Secure Routing and Power Optimization Algorithm for Wireless Ad Hoc Networks
-
School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
-
摘要:
針對無線自組織網(wǎng)絡(luò)在竊聽環(huán)境中的安全傳輸問題,該文提出了一種無線多跳自組織網(wǎng)絡(luò)的聯(lián)合安全路由和功率優(yōu)化算法。首先,在竊聽者服從泊松簇過程(PCP)這一假設(shè)下推導(dǎo)得到了系統(tǒng)安全中斷概率(SOP)和連接中斷概率(COP)的表達(dá)式;然后以安全中斷概率約束下的連接中斷概率最小為準(zhǔn)則,針對給定路徑推導(dǎo)得到了源與各跳中繼的最優(yōu)傳輸功率,并進(jìn)一步獲得了源與目的節(jié)點間的最優(yōu)路由。仿真結(jié)果表明,該文所提系統(tǒng)安全中斷概率和連接中斷概率的表達(dá)式與蒙特卡洛仿真結(jié)果相符,所提算法可獲得與窮舉搜索方法接近的安全性能,顯著優(yōu)于傳統(tǒng)方法。
-
關(guān)鍵詞:
- 多跳自組織網(wǎng)絡(luò) /
- 泊松簇過程 /
- 安全路由 /
- 功率優(yōu)化
Abstract:A joint security routing and power optimization algorithm for wireless multi-hop Ad hoc network is proposed in an eavesdropping environment. Firstly, the Secrecy Outage Probability (SOP) and expressions of Connection Outage Probability (COP) are derived under the assumption that the distribution of the eavesdroppers follows the Poisson Cluster Process (PCP). Then, in view of minimizing COP with the constraint of SOP, the optimal transmission power of each hop is derived for any given path. Based on that, the optimal route from the source to the destination is obtained. The simulations on COP and SOP show that the derived theoretical results agree well with the Monte-Carlo simulations. It is also shown that the security performance of the proposed algorithm is close to that of exhaustive searching, and also outperforms the traditional method.
-
表 1 父節(jié)點位置未知情況下的功率優(yōu)化和路由選擇算法
輸入:信噪比閾值${\gamma _c}$和${\gamma _e}$,安全中斷概率約束$\zeta $; 輸出:最優(yōu)路由${\varPi ^ * }$,最優(yōu)傳輸功率$P_{{T_k}}^ * $; (1) 計算${({\varphi _k})^{{{\rm{2}} / {(2 + \alpha )}}}}$,并對傳輸距離進(jìn)行賦值; (2) 用Dijkstra算法獲得最優(yōu)路由${\varPi ^ * }$; (3) 利用式(20)對最優(yōu)路由上的各跳計算相應(yīng)的最優(yōu)傳輸功率
$P_{{T_k}}^ * $;(4) 返回${\varPi ^ * }$, $P_{{T_k}}^ * $。 下載: 導(dǎo)出CSV
表 2 父節(jié)點位置已知情況下的功率優(yōu)化和路由選擇算法
輸入:網(wǎng)絡(luò)相關(guān)信息,信噪比閾值${\gamma _c}$和${\gamma _e}$,安全中斷概率約束$\zeta $; 輸出:最優(yōu)路由${\varPi ^ * }$,最優(yōu)傳輸功率$P_{{T_k}}^ * $; (1) 將網(wǎng)絡(luò)中任意兩合法節(jié)點間的距離賦值為${\varphi _k}$,將各合法節(jié)點
到各竊聽者簇的距離用${w_n}$進(jìn)行賦值;(2) 建立矩陣${{M}} \in {\mathbb{R}^{(M + 2) \times (M + 2)}}$,將矩陣${{M}}$的第$i$行第$j$列元
素用$\dfrac{ { {\gamma _c} } }{ { {\gamma _e} } }d_{i,j}^\alpha \displaystyle\sum\limits_{n = 1}^N {\dfrac{1}{ {d_{i,{C_n} }^\alpha } } }$進(jìn)行賦值;(3) 初始時,路由節(jié)點集合${\cal{R} } = \{ {{S} }\}$; (4) 依據(jù)$k = \arg \min ({{M} }({{S} },{R_k}){\rm{ + } }{{M} }({R_k},{{D} }))$尋找${{S} } - {R_k} - {{D} }$
距離最小的中繼${R_k}$,并將其加入集合${\cal{R}}$;(5) 依據(jù)${{M} }({{S} },{R_k}) \!=\! \mathop {\min }\limits_{ {R_n},{R_n} \in {\cal{M} } } ({{M} }({{S} },{R_k}),{{M} }({{S} },{R_n}) \!+\!{{M} }({R_n},$
${R_k})) $判斷是否存在其他備選中繼節(jié)點使得距離縮短,若存在
則將${R_n}$加入集合${\cal{R}}$,否則不變;(6) 與步驟(5)類似,依次判斷整條鏈路中每一跳是否存在其他備
選中繼節(jié)點使得該跳距離縮短,若存在則將該中繼加入集合
${\cal{R}}$,否則不變;(7) 重復(fù)步驟(6),直到整條路由的距離不再減少時,遍歷結(jié)束并
得到最優(yōu)路由${\varPi ^ * }$;(8) 利用式(22)對最優(yōu)路由上的每一跳計算相應(yīng)的最優(yōu)傳輸功
率$P_{{T_k}}^ * $;(9) 返回${\varPi ^ * }$, $P_{{T_k}}^ * $。 下載: 導(dǎo)出CSV
-
BURMESTER M and YASINSAC A. Security Issues in Ad-Hoc Networks[M]. New York: Springer, 2008: 89–105. 金梁, 宋昊天, 鐘州, 等. 多用戶大規(guī)模MIMO自適應(yīng)安全傳輸策略[J]. 電子與信息學(xué)報, 2018, 40(6): 1468–1475. doi: 10.11999/JEIT170974JIN Liang, SONG Haotian, ZHONG Zhou, et al. Adaptive secure transmission strategy for multiuser massive MIMO[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1468–1475. doi: 10.11999/JEIT170974 YOU Li, WANG Jiaheng, WANG Wenjin, et al. Secure multicast transmission for massive MIMO with statistical channel state information[J]. IEEE Signal Processing Letters, 2019, 26(6): 803–807. doi: 10.1109/LSP.2019.2900940 LUN Dong, ZHU Han, PETROPULU A P, et al. Improving wireless physical layer security via cooperating relays[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1875–1888. doi: 10.1109/TSP.2009.2038412 CHRAITI M, GHRAYEB A, ASSI C, et al. On the Achievable secrecy diversity of cooperative networks with untrusted relays[J]. IEEE Transactions on Communication, 2018, 66(1): 39–53. doi: 10.1109/TCOMM.2017.2755654 YANG Zilong and DONG Min. Low-complexity coordinated relay beamforming design for multi-cluster relay interference networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2215–2228. doi: 10.1109/TWC.2019.2901477 SHENG Zhichao, TUAN H D, DUONG T Q, et al. Beamforming optimization for physical layer security in MISO wireless networks[J]. IEEE Transactions on Signal Processing, 2018, 66(14): 3710–3723. doi: 10.1109/TSP.2018.2835406 洪濤, 張更新. 人工噪聲輔助的物理層安全信號峰均功率比減低算法[J]. 電子與信息學(xué)報, 2018, 40(6): 1426–1432. doi: 10.11999/JEIT170739HONG Tao and ZHANG Gengxin. Peak-to-average power ratio reduction algorithm of artificial-noise-aided secure signal[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1426–1432. doi: 10.11999/JEIT170739 ZHANG Wei, CHEN Jian, KUO Yonghong, et al. Artificial-noise-aided optimal beamforming in layered physical layer security[J]. IEEE Communications Letters, 2019, 23(1): 72–75. doi: 10.1109/LCOMM.2018.2881182 SAAD W, ZHOU Xiangyun, MAHAM B, et al. Tree formation with physical layer security considerations in wireless multi-hop networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(11): 3980–3991. doi: 10.1109/TWC.2012.091812.111923 LEE J H. Optimal power allocation for physical layer security in multi-hop DF relay networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(1): 28–38. doi: 10.1109/TWC.2015.2466091 XU Yang, LIU Jia, TAKAHASHI O, et al. SOQR: Secure optimal QoS routing in wireless ad hoc networks[C]. 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNC.2017.7925687. YAO Jianping and LIU Yuan. Secrecy rate maximization with outage constraint in multihop relaying networks[J]. IEEE Communications Letters, 2018, 22(2): 304–307. doi: 10.1109/LCOMM.2017.2768513 WANG Huiming, ZHANG Yan, NG D W K, et al. Secure routing with power optimization for Ad-Hoc networks[J]. IEEE Transactions on Communications, 2018, 66(10): 4666–4679. doi: 10.1109/TCOMM.2018.2835478 SAHA C, AFSHANG M, and DHILLON H S. Poisson cluster process: Bridging the gap between PPP and 3GPP HetNet models[C]. 2017 Information Theory and Applications Workshop, San Diego, USA, 2017: 1–9. doi: 10.1109/ITA.2017.8023448. CHEN Gaojie, COON J P, and TAJBAKHSH S E. Secure routing for multihop ad hoc networks with inhomogeneous eavesdropper clusters[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10660–10670. doi: 10.1109/TVT.2018.2866977 STOYAN D, CHIU S N, KENDALL W S, et al. Stochastic Geometry and Its Applications[M]. 3rd ed. Chichester: John Wiley & Sons, 2013: 171–175. -