基于索引調制OFDM雷達通信共享信號壓縮感知方法研究
doi: 10.11999/JEIT190740
-
空軍預警學院預警情報系 武漢 430019
基金項目: 國家自然科學基金(61271451)
A Compressed Sensing Method for Joint Radar and Communication System Based on OFDM-IM Signal
-
Department of Early Warning Intelligence, Air Force Early Warning Academy, Wuhan 430019, China
Funds: The National Natural Science Foundation of China (61271451)
-
摘要: 針對在雷達通信一體化(RadCom)系統(tǒng)中正交頻分復用(OFDM)共享信號通信速率不高、可靠性較差的問題,該文提出一種采用子載波索引調制(IM)的OFDM共享信號方案(OFDM-IM)以及對應的基于壓縮感知(CS)的雷達信號處理算法。該方案在發(fā)射端采用IM調制增強OFDM信號通信質量,在雷達接收端采用CS技術獲取目標的距離-速度2維超分辨圖像,進一步采用快速分段重構、2次相參積累的方法降低算法的計算復雜度。仿真實驗表明,相比于傳統(tǒng)算法,該方法能顯著提升對OFDM-IM共享信號的處理性能,并實現超低距離副瓣,是一種能夠同時增強雷達與通信性能的一體化共享信號方案。Abstract: Considering the problems of low communication rate and poor reliability of Orthogonal Frequency Division Multiplexing (OFDM) signals in joint Radar and Communication (RadCom) system, a subcarrier Index Modulation (IM) based OFDM RadCom signal scheme (OFDM-IM) and a corresponding radar signal processing algorithm based on Compressed Sensing (CS) are proposed in this paper. In the scheme, IM modulation is adopted at the transmitting end to enhance the communication quality of OFDM signal, CS technology is adopted at the radar receiving end to obtain the range-velocity 2-D super resolution image of radar targets, and the method of rapid piecewise reconstruction and second phase-coherent accumulation are further adopted to reduce the computational complexity of the algorithm. Simulation results show that, compared with the traditional algorithm, this method can significantly improve the processing performance of OFDM-IM RadCom signal and realize ultra-low side lobe in distance, which means the proposed scheme is able to enhance the performance of radar and communication in the same time.
-
表 1 OFDM信號參數
信號參數 取值 載波頻率 2.4 GHz 信號帶寬 20 MHz 脈沖寬度 26.8 μs OFDM數據段長度 25.6 μs 循環(huán)前綴長度 1.2 μs 子載波數 512 相參積累的脈沖數 64 下載: 導出CSV
-
NOWAK M, WICKS M, ZHANG Zhiping, et al. Co-designed radar-communication using linear frequency modulation waveform[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 28–35. doi: 10.1109/MAES.2016.150236 ZHOU Yifan, ZHOU Huilin, ZHOU Fuhui, et al. Resource allocation for a wireless powered integrated radar and communication system[J]. IEEE Wireless Communications Letters, 2019, 8(1): 253–256. doi: 10.1109/LWC.2018.2868819 劉冰凡, 陳伯孝. 基于OFDM-LFM信號的MIMO雷達通信一體化信號共享設計研究[J]. 電子與信息學報, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547LIU Bingfan and CHEN Baixiao. Integration of MIMO radar and communication with OFDM-LFM signals[J]. Journal of Electronics &Information Technology, 2019, 41(4): 801–808. doi: 10.11999/JEIT180547 LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Multiobjective optimal waveform design for OFDM integrated radar and communication systems[J]. Signal Processing, 2017, 141: 331–342. doi: 10.1016/j.sigpro.2017.06.026 LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21(10): 2174–2177. doi: 10.1109/LCOMM.2017.2723890 KONG Bo, WANG Yuhao, LEUNG H, et al. Sparse representation based range-Doppler processing for integrated OFDM radar-communication networks[J]. International Journal of Antennas and Propagation, 2017, 2017: 6528956. doi: 10.1155/2017/6528956 TIAN Xuanxuan, ZHANG Tingting, ZHANG Qinyu, et al. High accuracy doppler processing with low complexity in OFDM–based RadCom systems[J]. IEEE Communications Letters, 2017, 21(12): 2618–2621. doi: 10.1109/LCOMM.2017.2746563 劉永軍, 廖桂生, 楊志偉, 等. 一種超分辨OFDM雷達通信一體化設計方法[J]. 電子與信息學報, 2016, 38(2): 425–433. doi: 10.11999/JEIT150320LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. A Super-resolution design method for integration of OFDM radar and communication[J]. Journal of Electronics &Information Technology, 2016, 38(2): 425–433. doi: 10.11999/JEIT150320 TIGREK R F, DE HEIJ W J A, and VAN GENDEREN P. OFDM signals as the radar waveform to solve Doppler ambiguity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 130–143. doi: 10.1109/taes.2012.6129625 STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/jproc.2011.2131110 肖博, 霍凱, 劉永祥. 雷達通信一體化研究現狀與發(fā)展趨勢[J]. 電子與信息學報, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics &Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515 BA?AR E, AYG?Lü ü, PANAYIRCI E, et al. Orthogonal frequency division multiplexing with index modulation[J]. IEEE Transactions on Signal Processing, 2013, 61(22): 5536–5549. doi: 10.1109/tsp.2013.2279771 CHOI J. Coded OFDM-IM with transmit diversity[J]. IEEE Transactions on Communications, 2017, 65(7): 3164–3171. doi: 10.1109/TCOMM.2017.2699182 ABU-ALHIGA R and HAAS H. Subcarrier-index modulation OFDM[C]. The IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, 2009: 177–181. doi: 10.1109/PIMRC.2009.5449882. 張賢達. 矩陣分析與應用[M]. 2版. 北京: 清華大學出版社, 2013: 77–78.ZHANG Xianda. Matrix Analysis and Applications[M]. 2nd ed. Beijing: Tsinghua University Press, 2013: 77–78. TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/tit.2007.909108 張磊. 高分辨SAR/ISAR成像及誤差補償技術研究[D]. [博士論文], 西安電子科技大學, 2012: 36–37. doi: 10.7666/d.y2068190.ZHANG Lei. Study on high resolution SAR/ISAR imaging and error correction[D]. [Ph. D. dissertation], Xidian University, 2012: 36–37. doi: 10.7666/d.y2068190. -