一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于空間分布分析的混合失真無參考圖像質(zhì)量評價

陳勇 朱凱欣 房昊 劉煥淋

陳勇, 朱凱欣, 房昊, 劉煥淋. 基于空間分布分析的混合失真無參考圖像質(zhì)量評價[J]. 電子與信息學報, 2020, 42(10): 2533-2540. doi: 10.11999/JEIT190721
引用本文: 陳勇, 朱凱欣, 房昊, 劉煥淋. 基于空間分布分析的混合失真無參考圖像質(zhì)量評價[J]. 電子與信息學報, 2020, 42(10): 2533-2540. doi: 10.11999/JEIT190721
Yong CHEN, Kaixin ZHU, Hao FANG, Huanlin LIU. No-reference Image Quality Evaluation for Multiply-distorted Images Based on Spatial Domain Coding[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2533-2540. doi: 10.11999/JEIT190721
Citation: Yong CHEN, Kaixin ZHU, Hao FANG, Huanlin LIU. No-reference Image Quality Evaluation for Multiply-distorted Images Based on Spatial Domain Coding[J]. Journal of Electronics & Information Technology, 2020, 42(10): 2533-2540. doi: 10.11999/JEIT190721

基于空間分布分析的混合失真無參考圖像質(zhì)量評價

doi: 10.11999/JEIT190721
基金項目: 國家自然科學基金(51977021)
詳細信息
    作者簡介:

    陳勇:男,1963年生,博士,教授,研究方向為圖像處理

    朱凱欣:女,1994年,碩士生,研究方向為無參考圖像質(zhì)量評價和立體圖像質(zhì)量評價

    房昊:男,1993年,碩士,研究方向為無參考圖像質(zhì)量評價

    劉煥淋:女,1970年生,博士,教授,研究方向為信號處理等方面

    通訊作者:

    陳勇 chenyong@cqupt.edu.cn

  • 中圖分類號: TN911.73; TP391.41

No-reference Image Quality Evaluation for Multiply-distorted Images Based on Spatial Domain Coding

Funds: The National Natural Science Foundation of China (51977021)
  • 摘要: 針對難以準確有效地提取混合失真圖像質(zhì)量特征的問題,該文提出一種基于空間分布分析的圖像質(zhì)量評價方法。首先將圖像進行亮度系數(shù)歸一化處理,然后將圖像進行分塊,利用卷積神經(jīng)網(wǎng)絡(CNN)進行端對端的深度學習,采用多層次卷積核堆疊的方法獲取圖像的質(zhì)量感知特征,并通過全連接層將特征映射到圖像塊的質(zhì)量分數(shù)。再將塊質(zhì)量分數(shù)匯總獲取質(zhì)量池,通過對質(zhì)量池中局部質(zhì)量的空間分布情況進行分析,提取能夠表征其空間分布情況的特征,然后采用神經(jīng)網(wǎng)絡建立局部質(zhì)量到整體質(zhì)量的映射模型,將圖像的局部質(zhì)量進行匯總。最后在MLIVE, MDID2013, MDID2016混合失真圖像庫中進行性能測試以及與相關的對比算法進行比較,驗證了該算法的有效性。
  • 圖  1  CNN中各層網(wǎng)絡結構

    圖  2  “baby girl”失真圖像與其可視化質(zhì)量池

    圖  3  質(zhì)量池與其直方圖統(tǒng)計

    圖  4  基于空間分布分析的圖像質(zhì)量評價方法流程圖

    圖  5  算法的收斂性

    圖  6  MLIVE失真圖像的客觀評價值與DMOS的散點圖

    表  1  混合失真圖像庫描述

    圖像庫參考圖像失真類型圖像數(shù)主觀評分
    MLIVE15模糊+噪聲/模糊+JPEG壓縮4500-100(DMOS)
    MDID201312模糊+噪聲+JPEG壓縮3240-1(DMOS)
    MDID201620模糊+噪聲+對比度+JPEG壓縮+JP2K壓縮16000-8(MOS)
    下載: 導出CSV

    表  2  MLIVE圖像庫中各特征性有效性實驗

    特征PLCCSROCCKROCC
    均值0.9510.9410.753
    方差0.7950.7400.625
    偏斜度0.5700.4720.334
    峰度0.4610.4930.348
    整體評價0.9610.9510.781
    下載: 導出CSV

    表  3  不同圖像庫中算法性能測試

    圖像庫PLCCSROCCKROCCRMSE
    MLIVE(Part1)0.9690.9560.8224.502
    MLIVE(Part2)0.9570.9420.7844.944
    MLIVE(All)0.9610.9510.7814.831
    MDID20130.9350.9220.7550.017
    MDID20160.9210.9170.7490.756
    下載: 導出CSV

    表  4  算法性能對比實驗

    算法MLIVE(450 images)MDID2013(324 images)
    PLCCSROCCRMSEPLCCSROCCRMSE
    PSNRFR0.7400.67712.7240.5610.5600.042
    SSIMFR0.9260.9026.7970.4570.4500.045
    VIF[18]FR0.9320.9156.7610.9150.9050.020
    BRISQUE[5]NR0.9240.9007.1430.8330.8190.027
    NFERM[6]NR0.9170.8987.4590.8710.8550.024
    GWH-LBP[7]NR0.9490.9448.8730.9130.9080.019
    HOSA[8]NR0.9260.9026.9740.8920.8720.021
    Zhou[10]NR0.9510.9435.7470.9190.9070.019
    CORNIA[11]NR0.9160.9007.5860.9040.8980.020
    NIQE[19]NR0.8390.77510.2940.5630.5450.042
    SISBLM[20]NR0.8950.8788.4390.8140.8080.030
    本文算法NR0.9610.9514.8310.9350.9220.017
    下載: 導出CSV

    表  5  各算法時間復雜度對比實驗(s)

    算法SSIMVIFGWH-LBPSISBLM本文算法
    時間0.1025.2360.6572.4860.842
    下載: 導出CSV
  • GU Ke, TAO Dacheng, QIAO Junfei, et al. Learning a no-reference quality assessment model of enhanced images with big data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4): 1301–1313. doi: 10.1109/TNNLS.2017.2649101
    FREITAS P G, AKAMINE W Y L, and FARIAS M C Q. No-Reference image quality assessment using orthogonal color planes patterns[J]. IEEE Transactions on Multimedia, 2018, 20(12): 3353–3360. doi: 10.1109/TMM.2018.2839529
    張敏輝, 楊劍. 評價SAR圖像去噪效果的無參考圖像質(zhì)量指標[J]. 重慶郵電大學學報: 自然科學版, 2018, 30(4): 530–536. doi: 10.3979/j.issn.1673-825X.2018.04.014

    ZHANG Minhui and YANG Jian. A new referenceless image quality index to evaluate denoising performance of SAR images[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2018, 30(4): 530–536. doi: 10.3979/j.issn.1673-825X.2018.04.014
    徐弦秋, 劉宏清, 黎勇, 等. 基于RGB通道下模糊核估計的圖像去模糊[J]. 重慶郵電大學學報: 自然科學版, 2018, 30(2): 216–221. doi: 10.3979/j.issn.1673-825X.2018.02.009

    XU Xianqiu, LIU Hongqing, LI Yong, et al. Image deblurring with blur kernel estimation in RGB channels[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2018, 30(2): 216–221. doi: 10.3979/j.issn.1673-825X.2018.02.009
    MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695–4708. doi: 10.1109/TIP.2012.2214050
    GU Ke, ZHAI Guangtao, YANG Xiaokang, et al. Using free energy principle for blind image quality assessment[J]. IEEE Transactions on Multimedia, 2015, 17(1): 50–63. doi: 10.1109/TMM.2014.2373812
    LI Qiaohong, LIN Weisi, and FANG Yuming. No-reference quality assessment for multiply-distorted images in gradient domain[J]. IEEE Signal Processing Letters, 2016, 23(4): 541–545. doi: 10.1109/LSP.2016.2537321
    DAI Tao, GU Ke, NIU Li, et al. Referenceless quality metric of multiply-distorted images based on structural degradation[J]. Neurocomputing, 2018, 290: 185–195. doi: 10.1016/j.neucom.2018.02.050
    JIA Sen and ZHANG Yang. Saliency-based deep convolutional neural network for no-reference image quality assessment[J]. Multimedia Tools and Applications, 2018, 77(12): 14859–14872. doi: 10.1007/s11042-017-5070-6
    ZHOU Wujie, YU Lu, QIAN Yaguan, et al. Deep blind quality evaluator for multiply distorted images based on monogenic binary coding[J]. Journal of Visual Communication and Image Representation, 2019, 60: 305–311. doi: 10.1016/j.jvcir.2019.03.001
    YE Peng, KUMAR J, KANG Le, et al. Unsupervised feature learning framework for no-reference image quality assessment[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 1098–1105. doi: 10.1109/CVPR.2012.6247789.
    BOUREAU Y L, BACH F, LECUN Y, et al. Learning mid-level features for recognition[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2559–2566. doi: 10.1109/CVPR.2010.5539963.
    孫婭楠, 林文斌. 梯度下降法在機器學習中的應用[J]. 蘇州科技大學學報: 自然科學版, 2018, 35(2): 26–31. doi: 10.12084/j.issn.2096-3289.2018.02.006

    SUN Yanan and LIN Wenbin. Application of gradient descent method in machine learning[J]. Journal of Suzhou University of Science and Technology:Natural Science, 2018, 35(2): 26–31. doi: 10.12084/j.issn.2096-3289.2018.02.006
    JAYARAMAN D, MITTAL A, MOORTHY A K, et al. Objective quality assessment of multiply distorted images[C]. 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2012: 1693–1697. doi: 10.1109/ACSSC.2012.6489321.
    GU Ke, ZHAI Guangtao, YANG Xiaokang, et al. Hybrid no-reference quality metric for singly and multiply distorted images[J]. IEEE Transactions on Broadcasting, 2014, 60(3): 555–567. doi: 10.1109/TBC.2014.2344471
    SUN Wen, ZHOU Fei, and LIAO Qingmin. MDID: A multiply distorted image database for image quality assessment[J]. Pattern Recognition, 2017, 61: 153–168. doi: 10.1016/j.patcog.2016.07.033
    ZHANG Min, MURAMATSU C, ZHOU Xiangrong, et al. Blind image quality assessment using the joint statistics of generalized local binary pattern[J]. IEEE Signal Processing Letters, 2015, 22(2): 207–210. doi: 10.1109/LSP.2014.2326399
    SHEIKH H R and BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430–444. doi: 10.1109/TIP.2005.859378
    MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212. doi: 10.1109/LSP.2012.2227726
    LI Qiaohong, LIN Weisi, XU Jingtao, et al. Blind image quality assessment using statistical structural and luminance features[J]. IEEE Transactions on Multimedia, 2016, 18(12): 2457–2469. doi: 10.1109/TMM.2016.2601028
  • 加載中
圖(6) / 表(5)
計量
  • 文章訪問數(shù):  2930
  • HTML全文瀏覽量:  957
  • PDF下載量:  103
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-09-17
  • 修回日期:  2020-02-16
  • 網(wǎng)絡出版日期:  2020-03-09
  • 刊出日期:  2020-10-13

目錄

    /

    返回文章
    返回