基于空間分布分析的混合失真無參考圖像質(zhì)量評價
doi: 10.11999/JEIT190721
-
1.
重慶郵電大學工業(yè)物聯(lián)網(wǎng)與網(wǎng)絡化控制教育部重點實驗室 重慶 400065
-
2.
重慶郵電大學通信與信息工程學院 重慶 400065
No-reference Image Quality Evaluation for Multiply-distorted Images Based on Spatial Domain Coding
-
1.
Key Laboratory of Industrial Internet of Things & Network Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
摘要: 針對難以準確有效地提取混合失真圖像質(zhì)量特征的問題,該文提出一種基于空間分布分析的圖像質(zhì)量評價方法。首先將圖像進行亮度系數(shù)歸一化處理,然后將圖像進行分塊,利用卷積神經(jīng)網(wǎng)絡(CNN)進行端對端的深度學習,采用多層次卷積核堆疊的方法獲取圖像的質(zhì)量感知特征,并通過全連接層將特征映射到圖像塊的質(zhì)量分數(shù)。再將塊質(zhì)量分數(shù)匯總獲取質(zhì)量池,通過對質(zhì)量池中局部質(zhì)量的空間分布情況進行分析,提取能夠表征其空間分布情況的特征,然后采用神經(jīng)網(wǎng)絡建立局部質(zhì)量到整體質(zhì)量的映射模型,將圖像的局部質(zhì)量進行匯總。最后在MLIVE, MDID2013, MDID2016混合失真圖像庫中進行性能測試以及與相關的對比算法進行比較,驗證了該算法的有效性。
-
關鍵詞:
- 圖像質(zhì)量評價 /
- 無參考 /
- 卷積神經(jīng)網(wǎng)絡
Abstract: Considering the problem that it is difficult to accurately and effectively extract the quality features of mixed distortion image, an image quality assessment method based on spatial distribution analysis is proposed. Firstly, the brightness coefficients of the image are normalized, and the image is divided into blocks. While the Convolutional Neural Network (CNN) is used for end-to-end depth learning, the multi-level stacking of convolution cores is applied to acquire image quality perception features. The feature is mapped to the mass fraction of the image block through the full connection layer, then the quality pool is obtained by aggregating the quality of the block. Through the analysis of the spatial distribution of local quality in the quality pool, the features that can represent its spatial distribution are extracted, and then the mapping model from local quality to overall quality is established by the neural network to aggregate the local quality of the image. Finally, the effectiveness of the algorithm is verified by the performance tests in MLIVE, MDID2013 and MDID2016 mixed distortion image databases. -
表 1 混合失真圖像庫描述
圖像庫 參考圖像 失真類型 圖像數(shù) 主觀評分 MLIVE 15 模糊+噪聲/模糊+JPEG壓縮 450 0-100(DMOS) MDID2013 12 模糊+噪聲+JPEG壓縮 324 0-1(DMOS) MDID2016 20 模糊+噪聲+對比度+JPEG壓縮+JP2K壓縮 1600 0-8(MOS) 下載: 導出CSV
表 2 MLIVE圖像庫中各特征性有效性實驗
特征 PLCC SROCC KROCC 均值 0.951 0.941 0.753 方差 0.795 0.740 0.625 偏斜度 0.570 0.472 0.334 峰度 0.461 0.493 0.348 整體評價 0.961 0.951 0.781 下載: 導出CSV
表 3 不同圖像庫中算法性能測試
圖像庫 PLCC SROCC KROCC RMSE MLIVE(Part1) 0.969 0.956 0.822 4.502 MLIVE(Part2) 0.957 0.942 0.784 4.944 MLIVE(All) 0.961 0.951 0.781 4.831 MDID2013 0.935 0.922 0.755 0.017 MDID2016 0.921 0.917 0.749 0.756 下載: 導出CSV
表 4 算法性能對比實驗
算法 MLIVE(450 images) MDID2013(324 images) PLCC SROCC RMSE PLCC SROCC RMSE PSNR FR 0.740 0.677 12.724 0.561 0.560 0.042 SSIM FR 0.926 0.902 6.797 0.457 0.450 0.045 VIF[18] FR 0.932 0.915 6.761 0.915 0.905 0.020 BRISQUE[5] NR 0.924 0.900 7.143 0.833 0.819 0.027 NFERM[6] NR 0.917 0.898 7.459 0.871 0.855 0.024 GWH-LBP[7] NR 0.949 0.944 8.873 0.913 0.908 0.019 HOSA[8] NR 0.926 0.902 6.974 0.892 0.872 0.021 Zhou[10] NR 0.951 0.943 5.747 0.919 0.907 0.019 CORNIA[11] NR 0.916 0.900 7.586 0.904 0.898 0.020 NIQE[19] NR 0.839 0.775 10.294 0.563 0.545 0.042 SISBLM[20] NR 0.895 0.878 8.439 0.814 0.808 0.030 本文算法 NR 0.961 0.951 4.831 0.935 0.922 0.017 下載: 導出CSV
-
GU Ke, TAO Dacheng, QIAO Junfei, et al. Learning a no-reference quality assessment model of enhanced images with big data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4): 1301–1313. doi: 10.1109/TNNLS.2017.2649101 FREITAS P G, AKAMINE W Y L, and FARIAS M C Q. No-Reference image quality assessment using orthogonal color planes patterns[J]. IEEE Transactions on Multimedia, 2018, 20(12): 3353–3360. doi: 10.1109/TMM.2018.2839529 張敏輝, 楊劍. 評價SAR圖像去噪效果的無參考圖像質(zhì)量指標[J]. 重慶郵電大學學報: 自然科學版, 2018, 30(4): 530–536. doi: 10.3979/j.issn.1673-825X.2018.04.014ZHANG Minhui and YANG Jian. A new referenceless image quality index to evaluate denoising performance of SAR images[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2018, 30(4): 530–536. doi: 10.3979/j.issn.1673-825X.2018.04.014 徐弦秋, 劉宏清, 黎勇, 等. 基于RGB通道下模糊核估計的圖像去模糊[J]. 重慶郵電大學學報: 自然科學版, 2018, 30(2): 216–221. doi: 10.3979/j.issn.1673-825X.2018.02.009XU Xianqiu, LIU Hongqing, LI Yong, et al. Image deblurring with blur kernel estimation in RGB channels[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2018, 30(2): 216–221. doi: 10.3979/j.issn.1673-825X.2018.02.009 MITTAL A, MOORTHY A K, and BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695–4708. doi: 10.1109/TIP.2012.2214050 GU Ke, ZHAI Guangtao, YANG Xiaokang, et al. Using free energy principle for blind image quality assessment[J]. IEEE Transactions on Multimedia, 2015, 17(1): 50–63. doi: 10.1109/TMM.2014.2373812 LI Qiaohong, LIN Weisi, and FANG Yuming. No-reference quality assessment for multiply-distorted images in gradient domain[J]. IEEE Signal Processing Letters, 2016, 23(4): 541–545. doi: 10.1109/LSP.2016.2537321 DAI Tao, GU Ke, NIU Li, et al. Referenceless quality metric of multiply-distorted images based on structural degradation[J]. Neurocomputing, 2018, 290: 185–195. doi: 10.1016/j.neucom.2018.02.050 JIA Sen and ZHANG Yang. Saliency-based deep convolutional neural network for no-reference image quality assessment[J]. Multimedia Tools and Applications, 2018, 77(12): 14859–14872. doi: 10.1007/s11042-017-5070-6 ZHOU Wujie, YU Lu, QIAN Yaguan, et al. Deep blind quality evaluator for multiply distorted images based on monogenic binary coding[J]. Journal of Visual Communication and Image Representation, 2019, 60: 305–311. doi: 10.1016/j.jvcir.2019.03.001 YE Peng, KUMAR J, KANG Le, et al. Unsupervised feature learning framework for no-reference image quality assessment[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 1098–1105. doi: 10.1109/CVPR.2012.6247789. BOUREAU Y L, BACH F, LECUN Y, et al. Learning mid-level features for recognition[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 2559–2566. doi: 10.1109/CVPR.2010.5539963. 孫婭楠, 林文斌. 梯度下降法在機器學習中的應用[J]. 蘇州科技大學學報: 自然科學版, 2018, 35(2): 26–31. doi: 10.12084/j.issn.2096-3289.2018.02.006SUN Yanan and LIN Wenbin. Application of gradient descent method in machine learning[J]. Journal of Suzhou University of Science and Technology:Natural Science, 2018, 35(2): 26–31. doi: 10.12084/j.issn.2096-3289.2018.02.006 JAYARAMAN D, MITTAL A, MOORTHY A K, et al. Objective quality assessment of multiply distorted images[C]. 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2012: 1693–1697. doi: 10.1109/ACSSC.2012.6489321. GU Ke, ZHAI Guangtao, YANG Xiaokang, et al. Hybrid no-reference quality metric for singly and multiply distorted images[J]. IEEE Transactions on Broadcasting, 2014, 60(3): 555–567. doi: 10.1109/TBC.2014.2344471 SUN Wen, ZHOU Fei, and LIAO Qingmin. MDID: A multiply distorted image database for image quality assessment[J]. Pattern Recognition, 2017, 61: 153–168. doi: 10.1016/j.patcog.2016.07.033 ZHANG Min, MURAMATSU C, ZHOU Xiangrong, et al. Blind image quality assessment using the joint statistics of generalized local binary pattern[J]. IEEE Signal Processing Letters, 2015, 22(2): 207–210. doi: 10.1109/LSP.2014.2326399 SHEIKH H R and BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430–444. doi: 10.1109/TIP.2005.859378 MITTAL A, SOUNDARARAJAN R, and BOVIK A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3): 209–212. doi: 10.1109/LSP.2012.2227726 LI Qiaohong, LIN Weisi, XU Jingtao, et al. Blind image quality assessment using statistical structural and luminance features[J]. IEEE Transactions on Multimedia, 2016, 18(12): 2457–2469. doi: 10.1109/TMM.2016.2601028 -