衛(wèi)星物聯(lián)網(wǎng)場景下基于節(jié)點選擇的協(xié)作波束成形技術(shù)研究
doi: 10.11999/JEIT190707
-
南京郵電大學(xué)通信與信息工程學(xué)院 南京 210003
Research on the Collaborative Beamforming Technique Based on the Node Selection for Satellite Internet of Things
-
College of Telecommunications & Information Engineering, Nanjing University of Post and Telecommunications, Nanjing 210003, China
-
摘要:
針對衛(wèi)星物聯(lián)網(wǎng)(IoT)場景下信號長距離傳輸衰減大以及單個終端節(jié)點傳輸性能受限的問題,該文提出一種基于節(jié)點選擇的協(xié)作波束成形算法,增強終端節(jié)點的傳輸能力。在實際終端位置信息存在誤差的條件下,推導(dǎo)出了協(xié)作波束成形平均方向圖函數(shù),分析了不同系統(tǒng)參數(shù)對于協(xié)作波束成形平均方向圖和瞬時方向圖差異的影響。在此基礎(chǔ)上,根據(jù)衛(wèi)星物聯(lián)網(wǎng)鏈路傳輸性能需求,提出一種區(qū)域分組優(yōu)化的協(xié)作節(jié)點選擇算法。仿真結(jié)果表明,相比于傳統(tǒng)的分布式協(xié)作波束成形節(jié)點選擇算法,該文提出的算法在實際的誤差模型中旁瓣抑制和零陷生成方面具有更好的性能。
-
關(guān)鍵詞:
- 衛(wèi)星物聯(lián)網(wǎng) /
- 協(xié)作波束成形 /
- 節(jié)點選擇 /
- 隨機天線陣
Abstract:The transmission performance of nodes in the satellite Internet of Things(IoT) is limited due to the long-distance transmission and the power-constrained terminal. A collaborative beamforming technique is proposed based on the node selection algorithm to improve the transmission performance of nodes. An average far-field beampattern for collaborative beamforming is derived by considering the location information error in practical scenario. Furthermore, the difference between average beampattern and instantaneous beampattern is analyzed by the system parameters. On this basis, a node selection algorithm is proposed based on region grouping not only to meet the requirement of satellite link, but also to suppress the sidelobe. Simulation results show better performance of the proposed algorithm compared with the traditional node selection algorithms in the actural error model.
-
表 1 區(qū)域分組節(jié)點選擇算法
${\rm{List}}m$=[]:存放$[{A_m}\sim {A_{m + k - 1}}]$中節(jié)點集合;${\rm{List}}m'$=[]:存放$[{A_{M + m}}\sim {A_{M + m + k - 1}}]$中節(jié)點集合; ${\rm{List}}C$=[]:存放$[{A_m}\sim {A_{m + k - 1}}]$中用于協(xié)作傳輸節(jié)點集合;${\rm{List}}C'$=[]:存放$[{A_{M + m}}\sim {A_{M + m + k - 1}}]$中用于協(xié)作傳輸節(jié)點集合; ${\rm{List}}F$=[]:存放代價函數(shù)值的集合;初始隨機產(chǎn)生$S$個節(jié)點:${P_s}({r_s},{\phi _s}),\;s = 1,2,···,S$; $S$:源節(jié)點覆蓋節(jié)點數(shù);$M$:分組對數(shù);$N$:協(xié)作波束成形節(jié)點數(shù);$E$:迭代次數(shù); For $s$=1 to $S$ do For $m$=1 to $M$ do If ${\phi _s} \in [\phi {A_m}\sim \phi {A_{m + k - 1}}]$ then ${\rm{List}}m$=${\rm{List}}m$+${P_s}$; End If ${\phi _s} \in [\phi {A_{M + m}}\sim \phi {A_{M + m + k - 1}}]$ then ${\rm{List}}m'$=${\rm{List}}m'$+${P_s}$; End End End For $e$=1 to $E$ do For $m$=1 to $M$ do 從${\rm{List}}m$中隨機選擇${{[N} / {\rm{2}}}]$或${{[(N + 1)} / {\rm{2}}}]$個節(jié)點放入${\rm{List}}C$中; 從${\rm{List}}m'$中隨機選擇${{[N} / {\rm{2}}}]$或${{[(N + 1)} / {\rm{2}}}]$個節(jié)點放入${\rm{List}}C'$中; 根據(jù)${\rm{List}}C$和${\rm{List}}C'$中的節(jié)點計算代價函數(shù)${f_m}$; End ${\rm{List}}F$=${\rm{List}}F + {f_m}$; End Find(min(${\rm{List}}F$(average)))$\xrightarrow{{}}$$\{ {A_{{\rm{best}}}}\sim {A_{{\rm{best}} + k - 1}},{A_{M + {\rm{best}}}}\sim {A_{M + {\rm{best}} + k - 1}}\} $。 下載: 導(dǎo)出CSV
表 2 仿真參數(shù)設(shè)計表
參數(shù) 值 衛(wèi)星軌道高度 $d$=600 km 衛(wèi)星天線增益 ${G_R}$=25 dBi 衛(wèi)星品質(zhì)因數(shù) ${G / T}$=5 ${\rm{dB}}{{\rm{K}}^{ - 1}}$ 空間傳播損耗 ${L_f}$=168.7 dB 頻率 2.6 GHz 節(jié)點天線增益(全向天線) ${G_s}$=0 dBi 節(jié)點發(fā)射功率 ${P_s}$=10 dBm 調(diào)制方式 QPSK 信息速率 ${R_b}$=2048 kbps 無線傳感器網(wǎng)絡(luò)范圍 500$ \times $500 m2 網(wǎng)絡(luò)節(jié)點總數(shù) 300 源節(jié)點覆蓋范圍 R=100 m,約60個左右 定位誤差 $B$=1 m,(約10個波長) 期望/非期望方向 (600 km,${30^{ \circ} }$,${0^{ \circ} }$)/(600 km,${30^{ \circ} }$,${1^{ \circ} }$) 下載: 導(dǎo)出CSV
-
CIONI S, DE GAUDENZI R, DEL RIO HERRERO O, et al. On the satellite role in the era of 5G massive machine type communications[J]. IEEE Network, 2018, 32(5): 54–61. doi: 10.1109/MNET.2018.1800024 QU Zhicheng, ZHANG Gengxin, CAO Haotong, et al. LEO satellite constellation for internet of things[J]. IEEE Access, 2017, 5: 18391–18401. doi: 10.1109/Access.2017.2735988 XIA Tingting, WANG M M, and YOU Xiaohu. Satellite Machine-type communication for maritime Internet of Things: An interference perspective[J]. IEEE Access, 2019, 7: 76404–76415. doi: 10.1109/Access.2019.2919253 DE SANCTIS M, CIANCA E, ARANITI G, et al. Satellite communications supporting internet of remote things[J]. IEEE Internet of Things Journal, 2016, 3(1): 113–123. doi: 10.1109/JIOT.2015.2487046 CHIEN W C, LAI C F, HOSSAIN M S, et al. Heterogeneous space and terrestrial integrated networks for IoT: Architecture and challenges[J]. IEEE Network, 2019, 33(1): 15–21. doi: 10.1109/MNET.2018.1800182 MUDUMBAI R, BROWN III D R, MADHOW U, et al. Distributed transmit beamforming: Challenges and recent progress[J]. IEEE Communications Magazine, 2009, 47(2): 102–110. doi: 10.1109/MCOM.2009.4785387 JAYAPRAKASAM S, RAHIM S K A, and LEOW C Y. Distributed and collaborative beamforming in wireless sensor networks: Classifications, trends, and research directions[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2092–2116. doi: 10.1109/COMST.2017.2720690 OCHIAI H, MITRAN P, POOR H V, et al. Collaborative beamforming for distributed wireless ad hoc sensor networks[J]. IEEE Transactions on Signal Processing, 2005, 53(11): 4110–4124. doi: 10.1109/tsp.2005.857028 AHMED M F A and VOROBYOV S A. Collaborative beamforming for wireless sensor networks with gaussian distributed sensor nodes[J]. IEEE Transactions on Wireless Communications, 2009, 8(2): 638–643. doi: 10.1109/TWC.2009.071339 JAYAPRAKASAM S, ABDUL RAHIM S K, LEOW C Y, et al. Multiobjective beampattern optimization in collaborative beamforming via NSGA-II with selective distance[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2348–2357. doi: 10.1109/tap.2017.2684187 AHMED M F A and VOROBYOV S A. Sidelobe control in collaborative beamforming via node selection[J]. IEEE Transactions on Signal Processing, 2010, 58(12): 6168–6180. doi: 10.1109/tsp.2010.2077631 CHEN J C, WEN Chaokai, and WONG K K. An efficient sensor-node selection algorithm for sidelobe control in collaborative beamforming[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 5984–5994. doi: 10.1109/TVT.2015.2478898 SUN Geng, LIU Yanheng, WANG Aimin, et al. Sidelobe control by node selection algorithm based on virtual linear array for collaborative beamforming in WSNs[J]. Wireless Personal Communications, 2016, 90(3): 1443–1462. doi: 10.1007/s11277-016-3403-9 SUN Geng, LIU Yanheng, ZHANG Jing, et al. Node selection optimization for collaborative beamforming in wireless sensor networks[J]. Ad Hoc Networks, 2016, 37: 389–403. doi: 10.1016/j.adhoc.2015.08.031 SUN Geng, LIU Yanheng, LIANG Shuang, et al. A sidelobe and energy optimization array node selection algorithm for collaborative beamforming in wireless sensor networks[J]. IEEE Access, 2018, 6: 2515–2530. doi: 10.1109/ACCESS.2017.2783969 蔣俊正, 李楊劍, 趙海兵, 等. 一種大規(guī)模傳感器網(wǎng)絡(luò)節(jié)點分布式定位算法[J]. 電子與信息學(xué)報, 2019, 41(12): 3022–3028. doi: 10.11999/JEIT181101JIANG Junzheng, LI Yangjian, ZHAO Haibing, et al. A distributed node localization algorithm for large scale sensor networks[J]. Journal of Electronics &Information Technology, 2019, 41(12): 3022–3028. doi: 10.11999/JEIT181101 汪晗, 成昂軒, 王坤, 等. 無線傳感器網(wǎng)絡(luò)分布式迭代定位誤差控制算法[J]. 電子與信息學(xué)報, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344WANG Han, CHENG Angxuan, WANG Kun, et al. Error control algorithm of distributed localization in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2018, 40(1): 72–78. doi: 10.11999/JEIT170344 KIM Y, LEE B, SO H, et al. Localization technique considering position uncertainty of reference nodes in wireless sensor networks[J]. IEEE Sensors Journal, 2018, 18(3): 1324–1332. doi: 10.1109/JSEN.2017.2782805 STOLERU R, STANKOVIC J A, and SON S H. On composability of localization protocols for wireless sensor networks[J]. IEEE Network, 2008, 22(4): 21–25. doi: 10.1109/MNET.2008.4579767 -