H-CRAN網(wǎng)絡下聯(lián)合擁塞控制和資源分配的網(wǎng)絡切片動態(tài)資源調度策略
doi: 10.11999/JEIT190439
-
1.
重慶郵電大學通信與信息工程學院移動通信技術重點實驗室 重慶 400065
-
2.
重慶大學光電工程學院 重慶 400044
Joint Congestion Control and Resource Allocation Dynamic Scheduling Strategy for Network Slices in Heterogeneous Cloud Raido Access Network
-
1.
Key Laboratory of Mobile Communication Technology, School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
School of Measurement and Control Technology and Instruments, Chongqing University, Chongqing 400044, China
-
摘要:
針對異構云無線接入網(wǎng)絡(H-CRAN)網(wǎng)絡下基于網(wǎng)絡切片的在線無線資源動態(tài)優(yōu)化問題,該文通過綜合考慮業(yè)務接入控制、擁塞控制、資源分配和復用,建立一個以最大化網(wǎng)絡平均和吞吐量為目標,受限于基站(BS)發(fā)射功率、系統(tǒng)穩(wěn)定性、不同切片的服務質量(QoS)需求和資源分配等約束的隨機優(yōu)化模型,并進而提出了一種聯(lián)合擁塞控制和資源分配的網(wǎng)絡切片動態(tài)資源調度算法。該算法會在每個資源調度時隙內動態(tài)地為性能需求各異的網(wǎng)絡切片中的用戶分配資源。仿真結果表明,該文算法能在滿足各切片用戶QoS需求和維持網(wǎng)絡穩(wěn)定的基礎上,提升網(wǎng)絡整體吞吐量,并且還可通過調整控制參量的取值實現(xiàn)時延和吞吐量間的動態(tài)平衡。
-
關鍵詞:
- 異構云無線接入網(wǎng)絡 /
- 網(wǎng)絡切片 /
- 資源分配 /
- 李雅普諾夫隨機優(yōu)化
Abstract:For online dynamic radio resources optimization for network slices in Heterogeneous Cloud Raido Access Network (H-CRAN), by comprehensively considering traffic admission control, congestion control, resource allocation and reuse, the problem is formulated as a stochastic optimization programming which maximizes network average total throughput subject to Base Station (BS) transmit power, system stability, Quality of Service (QoS) requirements of different slices and resource allocation constraints. Then, a joint congestion control and resource allocation dynamic scheduling algorithm is proposed which will dynamically allocate resources to users in network slices with distinct performance requirements within each resource scheduling time slot. The simulation results show that the proposed algorithm can improve the network overall throughput while satisfying the QoS requirement of each slice user and maintaining network stability. Besides, it could also flexibly strike a dynamic balance between delay and throughput by simply tuning an introduced control parameter.
-
表 1 H-CRAN網(wǎng)絡下聯(lián)合擁塞控制和資源分配的網(wǎng)絡切片動態(tài)資源調度算法
(1) 初始化控制參量$V > 0$、各用戶的初始隊列長度${Q_u}(0),\forall u \in {\cal{U}}$和最大時隙數(shù)${T^{\max }}$初始化最大迭代次數(shù)$T_0^{\max }$和允許誤差$\delta $ (2) for $t = 0,1, ··· ,{T^{\max } } - 1$ (3) 根據(jù)式(24)分別計算各用戶當前時隙最優(yōu)的流量接入控制策略 (4) Repeat: (5) 令迭代索引$n = 1$,初始化拉格朗日乘子${{\lambda}} $, ${{\eta }}$和${{\mu}} $ (6) for $s \in {\cal{S}}$ (7) 計算子載波$s$當前時隙(近似)最優(yōu)的子載波復用、分配和功率分配策略${\alpha _s}^*$, ${{\beta}} _s^*$和${{{P}}_s}^*$,進而更新各用戶剩余的排隊隊列長度 (8) 若某用戶$u \in {\cal{U}}$已經獲得了足夠的子載波(即其隊列長度為0),則將其從接下來的子載波分配過程中排除。 (9) 若所有用戶均分配到足夠的子載波,則break (10) end for (11) 根據(jù)得到的(近似)最優(yōu)子載波復用、分配和功率分配策略${\alpha ^*}$, ${\beta ^*}$和${P^*}$計算拉格朗日函數(shù)${\cal{L}}{\left( {\alpha ,\beta ,P,\lambda ,\eta ,\mu } \right)^{(n)}}$ (12) Until$\left| { {\cal{L} }{ {\left( {\alpha ,\beta ,P,\lambda ,\eta ,\mu } \right)}^{(n)} } - {\cal{L} }{ {\left( {\alpha ,\beta ,P,\lambda ,\eta ,\mu } \right)}^{(n - 1)} } } \right| \le \delta $ or $n > T_0^{\max }$, then stop Otherwise, 利用次梯度法更新拉格朗日乘子$\lambda $,
$\eta $和$\mu $,令$n = n + 1$并返回第6步(13) 根據(jù)式(17)更新各用戶在下一時隙的業(yè)務隊列長度 (14) end for (15) 輸出:(近似)最優(yōu)流量接入控制、子載波復用和分配以及功率分配策略$r$, $\alpha $, $\beta $和$P$,${Q_u}(t),\forall u \in {\cal{U}},t$。 下載: 導出CSV
-
Cisco System. Cisco visual networking index: Global mobile data traffic forecast update, 2017–2022 White Paper[R/OL]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html, 2019. LI Xin, SAMAKA M, CHAN H A, et al. Network slicing for 5G: challenges and opportunities[J]. IEEE Internet Computing, 2017, 21(5): 20–27. doi: 10.1109/MIC.2017.3481355 ITU-R. IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond[EB/OL]. http://www.itu.int/pub/R-REC/en. 2020. LI Jian, PENG Mugen, YU Yuling, et al. Energy-efficient joint congestion control and resource optimization in heterogeneous cloud radio access networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9873–9887. doi: 10.1109/TVT.2016.2531184 ZHANG Haijun, WANG Baobao, JIANG Chunxiao, et al. Energy efficient dynamic resource optimization in NOMA system[J]. IEEE Transactions on Wireless Communications, 2018, 17(9): 5671–5683. doi: 10.1109/TWC.2018.2844359 DANG Tian and PENG Mugen. Delay-aware radio resource allocation optimization for network slicing in fog radio access networks[C]. 2018 IEEE International Conference on Communications Workshops, Kansas City, USA, 2018: 1–6. doi: 10.1109/ICCW.2018.8403717. AMANI N, PEDRAM H, TAHERI H, et al. Energy-efficient resource allocation in heterogeneous cloud radio access networks via BBU offloading[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1365–1377. doi: 10.1109/TVT.2018.2882466 KIM T and CHANG J M. Profitable and energy-efficient resource optimization for heterogeneous cloud-based radio access networks[J]. IEEE Access, 2019, 7: 34719–34737. doi: 10.1109/ACCESS.2019.2904766 ZHANG Biling, MAO Xingwang, YU J L, et al. Resource allocation for 5G heterogeneous cloud radio access networks with D2D communication: a matching and coalition approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5883–5894. doi: 10.1109/TVT.2018.2802900 唐倫, 魏延南, 馬潤琳, 等. 虛擬化云無線接入網(wǎng)絡下基于在線學習的網(wǎng)絡切片虛擬資源分配算法[J]. 電子與信息學報, 2019, 41(7): 1533–1539. doi: 10.11999/JEIT180771TANG Lun, WEI Yannan, MA Runlin, et al. Online learning-based virtual resource allocation for network slicing in virtualized cloud radio access network[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1533–1539. doi: 10.11999/JEIT180771 MEI Jie, ZHENG Kan, ZHAO Long, et al. A latency and reliability guaranteed resource allocation scheme for LTE V2V communication systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3850–3860. doi: 10.1109/TWC.2018.2816942 NEELY M J. Stochastic network optimization with application to communication and queueing systems[J]. Synthesis Lectures on Communication Networks, 2010, 3(1): 15–62. doi: 10.2200/S00271ED1V01Y201006CNT007 MOKDAD A, AZMI P, MOKARI N, et al. Cross-layer energy efficient resource allocation in PD-NOMA based H-CRANs: implementation via GPU[J]. IEEE Transactions on Mobile Computing, 2019, 18(6): 1246–1259. doi: 10.1109/TMC.2018.2860985 TANG Liya, ZHANG Xian, XIANG Hongyu, et al. Joint resource allocation and caching placement for network slicing in fog radio access networks[C]. The 18th International Workshop on Signal Processing Advances in Wireless Communications, Sapporo, Japan, 2017: 1–6. doi: 10.1109/SPAWC.2017.8227791. LEE Y L, LOO J, CHUAH T C, et al. Dynamic network slicing for multitenant heterogeneous cloud radio access networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2146–2161. doi: 10.1109/TWC.2017.2789294 TANG Lun, YANG Xixi, WU Xiaolin, et al. Queue stability-based virtual resource allocation for virtualized wireless networks with self-backhauls[J]. IEEE Access, 2018, 6: 13604–13616. doi: 10.1109/ACCESS.2018.2797088 -