一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

車聯(lián)網(wǎng)中一種基于軟件定義網(wǎng)絡(luò)與移動邊緣計算的卸載策略

張海波 荊昆侖 劉開健 賀曉帆

張海波, 荊昆侖, 劉開健, 賀曉帆. 車聯(lián)網(wǎng)中一種基于軟件定義網(wǎng)絡(luò)與移動邊緣計算的卸載策略[J]. 電子與信息學(xué)報, 2020, 42(3): 645-652. doi: 10.11999/JEIT190304
引用本文: 張海波, 荊昆侖, 劉開健, 賀曉帆. 車聯(lián)網(wǎng)中一種基于軟件定義網(wǎng)絡(luò)與移動邊緣計算的卸載策略[J]. 電子與信息學(xué)報, 2020, 42(3): 645-652. doi: 10.11999/JEIT190304
Haibo ZHANG, Kunlun JING, Kaijian LIU, Xiaofan HE. An Offloading Mechanism Based on Software Defined Network and Mobile Edge Computing in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(3): 645-652. doi: 10.11999/JEIT190304
Citation: Haibo ZHANG, Kunlun JING, Kaijian LIU, Xiaofan HE. An Offloading Mechanism Based on Software Defined Network and Mobile Edge Computing in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(3): 645-652. doi: 10.11999/JEIT190304

車聯(lián)網(wǎng)中一種基于軟件定義網(wǎng)絡(luò)與移動邊緣計算的卸載策略

doi: 10.11999/JEIT190304
基金項目: 國家自然科學(xué)基金(61801065, 61601071),長江學(xué)者和創(chuàng)新團隊發(fā)展計劃基金(IRT16R72),重慶市基礎(chǔ)與前沿項目(cstc2018jcyjAX0463)
詳細信息
    作者簡介:

    張海波:男,1979年生,副教授,研究方向為無線資源管理

    荊昆侖:男,1995年生,碩士生,研究方向為移動邊緣計算

    劉開?。号?,1981年生,講師,研究方向為最優(yōu)化算法

    賀曉帆:男,1985年生,助理教授,研究方向為無線資源優(yōu)化

    通訊作者:

    劉開健 liukj@cqupt.edu.cn

  • 中圖分類號: TN929.5

An Offloading Mechanism Based on Software Defined Network and Mobile Edge Computing in Vehicular Networks

Funds: The National Natural Science Foundation of China (61801065, 61601071), The Program for Changjiang Scholars and Innovative Research Team in University (IRT16R72), The General Project on Foundation and Cutting-edge Research Plan of Chongqing (cstc2018jcyjAX0463)
  • 摘要:

    在新興的車聯(lián)網(wǎng)絡(luò)中,汽車終端請求卸載的任務(wù)對網(wǎng)絡(luò)帶寬、卸載時延等有著更加嚴苛的需求,而新型通信網(wǎng)絡(luò)研究中移動邊緣計算(MEC)的提出更好地解決了這一挑戰(zhàn)。該文著重解決的是汽車終端進行任務(wù)卸載時卸載對象的匹配問題。文中引入了軟件定義車載網(wǎng)絡(luò)(SDN-V)對全局變量統(tǒng)一調(diào)度,實現(xiàn)了資源控制管理、設(shè)備信息采集以及任務(wù)信息分析?;谟脩羧蝿?wù)的差異化性質(zhì),定義了重要度的模型,在此基礎(chǔ)上,通過設(shè)計任務(wù)卸載優(yōu)先級機制算法,實現(xiàn)任務(wù)優(yōu)先級劃分。針對多目標優(yōu)化模型,采用乘子法對非凸優(yōu)化模型進行求解。仿真結(jié)果表明,與其他卸載策略相比,該文所提卸載機制對時延和能耗優(yōu)化效果明顯,能夠最大程度地保證用戶的效益。

  • 圖  1  系統(tǒng)模型圖

    圖  2  數(shù)據(jù)大小與能耗關(guān)系圖

    圖  3  任務(wù)所需周期與能耗關(guān)系圖

    圖  4  數(shù)據(jù)大小與時延關(guān)系圖

    圖  5  任務(wù)所需周期與時延關(guān)系圖

    圖  6  數(shù)據(jù)大小與總開銷關(guān)系圖

    圖  7  任務(wù)所需周期數(shù)與總開銷關(guān)系圖

    表  1  任務(wù)卸載優(yōu)先級機制

     (1) 輸入:車輛$i$的請求信息為$\{ {C_i},{S_i},t_{{Q_i}}^{\max }\} $,定義$\zeta $的取值,$i \in \{ 1\; 2\; ··· \; n\} $, ${\rm{Im}}{{\rm{p}}_{\rm{i}}}{\rm{ = \{ im}}{{\rm{p}}_{\rm{1}}}{\kern 1pt} {\kern 1pt} {\rm{im}}{{\rm{p}}_{\rm{2}}}\; ···\; {\rm{im}}{{\rm{p}}_{{n}}}\; {\rm{\} }}$
     (2) 輸出:降序排列的重要度${\rm{im}}{{\rm{p}}_i}$
     (3) for $i = 1;i < n;i + + $
     (4) 將${C_i},t_{{Q_i}}^{\max }$代入式(9)求出${\rm{im}}{{\rm{p}}_i}$
     (5) ${\rm{Im}}{{\rm{p}}_{\rm{i}}}={\rm{\{ im}}{{\rm{p}}_{\rm{1}}}{\kern 1pt} {\kern 1pt} {\rm{im}}{{\rm{p}}_{\rm{2}}}{\kern 1pt} {\kern 1pt} ···\; {\rm{im}}{{\rm{p}}_{{i}}}{\rm{\} }}$
     (6) for $i = 1:n$ do
     (7) if ${{{\rm Imp}(i) < {\rm Imp}(i + 1)}}$; ${{\rm temp} = {\rm Imp}(i + 1)}$; ${{{\rm Imp}(i + 1) = {\rm Imp}(i)}}{\kern 1pt} {\kern 1pt} {\kern 1pt} ;{{{\rm Imp}(i) = {\rm temp}}}$
     (8) end
    下載: 導(dǎo)出CSV

    表  2  基于Q-學(xué)習(xí)的任務(wù)卸載策略機制

     (1) 輸入:車輛$i$的請求信息$\{ {Q_i},{T_i}\} $, ${\tau _{\rm{1}}},{\tau _2},({\rm{0 < }}{\tau _{\rm{1}}} < {\tau _{\rm{2}}})$, $i \in \{ 1\; 2\; ··· \; n\} $, ${\rm{Im}}{{\rm{p}}_{{i}}}{\rm{ = \{ im}}{{\rm{p}}_{\rm{1}}}{\kern 1pt} {\kern 1pt} {\rm{im}}{{\rm{p}}_{\rm{2}}}\; ···\; {\rm{im}}{{\rm{p}}_{{i}}}{\rm{\} }}$
     (2) 輸出:${x_i}$, ${\psi _i}$
     (3) if ${\rm{im}}{{\rm{p}}_i} < {\tau _{\rm{1}}}$:${x_i}=0$;${\kern 1pt} {\kern 1pt} {\rm{im}}{{\rm{p}}_i} > {\tau _2}$:${x_i}{\rm{ = 1}}$
     (4) elif ${\tau _{\rm{1}}} < {\rm{im}}{{\rm{p}}_i} < {\tau _{\rm{2}}}$:初始化$g$, ${x_{ij}} = 1$, $\varsigma $, $p$, $\hat Q\left( {{a_i}} \right) = 0,\; {\kern 1pt} t = 0$最大收斂時間${t_{c - \max }}$
     (5) while ${\kern 1pt} t < {t_{c - \max }} + 1$:按照時延約束對車輛用戶排序
     (6) for $i = 1:N\; {\kern 1pt} {\kern 1pt} $ do
     (7) 根據(jù)貪婪方法選擇行為${a_i}$、根據(jù)式(15)求出用戶獎勵
     (8) 更新$\hat { Q}$數(shù)值矩陣通過${\hat Q_{t + 1}}\left( {s,a} \right) \leftarrow \left( {1 - \varsigma } \right){\hat Q_t}\left( {s,a} \right) + \varsigma \left( {g + \eta \mathop {\max }\limits_{a'} {{\hat Q}_t}\left( {s',a'} \right)} \right)$, $p \leftarrow \left( {p/\sqrt t } \right)$
     (9) end for;$t = t + 1$;end while
     (10) 利用${\psi _i}$更新目標優(yōu)化式(7)
     (11) end
    下載: 導(dǎo)出CSV

    表  3  模擬參數(shù)表

    參數(shù) 數(shù)值
    計算任務(wù)${Q_i}$ 1~50 MB
    傳輸帶寬$W$ 100 MHz
    汽車用戶發(fā)射功率${p_i}$ 0.2 W
    任務(wù)所需CPU周期數(shù)${C_i}$ 0.1~1 GHz
    MEC服務(wù)器CPU周期頻率${f_{\rm b}}$ 6 GHz
    車輛用戶的CPU周期頻率${f_v}$ 0.5~1 GHz
    高斯噪聲${\sigma ^2}$ –100 dBm
    信道傳輸距離${d_{mn}}$ 5~500 m
    汽車CPU能耗功率系數(shù)${p_{{v} } }$ 80 W/GHz
    電池最大容量 20 kWh
    下載: 導(dǎo)出CSV
  • 程剛, 郭達. 車聯(lián)網(wǎng)現(xiàn)狀與發(fā)展研究[J]. 移動通信, 2011, 35(17): 23–26. doi: 10.3969/j.issn.1006-1010.2011.17.004

    CHENG Gang, and GUO Da. Research on the status and development of internet of vehicles[J]. Mobile Communications, 2011, 35(17): 23–26. doi: 10.3969/j.issn.1006-1010.2011.17.004
    齊彥麗, 周一青, 劉玲, 等. 融合移動邊緣計算的未來5G移動通信網(wǎng)絡(luò)[J]. 計算機研究與發(fā)展, 2018, 55(3): 478–486. doi: 10.7544/issn1000-1239.2018.20170801

    QI Yanli, ZHOU Yiqing, LIU Ling, et al. MEC coordinated future 5G mobile wireless networks[J]. Journal of Computer Research and Development, 2018, 55(3): 478–486. doi: 10.7544/issn1000-1239.2018.20170801
    LI Yong, JIN Depeng, HUI Pan, et al. Optimal base station scheduling for device-to-device communication underlaying cellular networks[J]. IEEE Journal on Selected Areas in Communications, 2015, 34(1): 27–40. doi: 10.1109/JSAC.2015.2452415
    AMEMIYA K, AKIYAMA Y, KOBAYASHI K, et al. On-site evaluation of a software cellular based MEC system with downlink slicing technology[C]. The 7th IEEE International Conference on Cloud Networking, Tokyo, Japan, 2018: 1–7. doi: 10.1109/CloudNet.2018.8549380.
    WANG Hansong, LI Xi, JI Hong, et al. Dynamic offloading scheduling scheme for MEC-enabled vehicular networks[C]. 2018 IEEE/CIC International Conference on Communications in China, Beijing, China, 2018: 206–210. doi: 10.1109/ICCChinaW.2018.8674508.
    YU Rong, DING Jiefei, HUANG Xumin, et al. Optimal resource sharing in 5G-enabled vehicular networks: A matrix game approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(10): 7844–7856. doi: 10.1109/tvt.2016.2536441
    鮑楠, 左加闊, 胡晗, 等. 基于SDN的網(wǎng)絡(luò)資源選擇多目標優(yōu)化算法[J]. 通信學(xué)報, 2019, 40(2): 51–59. doi: 10.11959/j.issn.1000?436x.2019031

    BAO Nan, ZUO Jiakuo, HU Han, et al. SDN based network resource selection multi-objective optimization algorithm[J]. Journal on Communications, 2019, 40(2): 51–59. doi: 10.11959/j.issn.1000?436x.2019031
    CHEN Min and HAO Yixue. Task offloading for mobile edge computing in software defined ultra-dense network[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 587–597. doi: 10.1109/JSAC.2018.2815360
    ZHANG Ke, MAO Yuming, LENG Supeng, et al. Optimal delay constrained offloading for vehicular edge computing networks[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7997360.
    HU Bo, CHEN Jianye, and LI fengcun. Dynamic service allocation algorithm in mobile edge computing[C]. 2017 International Conference on Information and Communication Technology Convergence, Jeju, South Korea, 2017: 104–109. doi: 10.1109/ICTC.2017.8190951.
    LI Baozhu, ZHAO Xuhui, HAN Shiyuan, et al. New SDN-based architecture for integrated vehicular cloud computing networking[C]. 2018 International Conference on Selected Topics in Mobile and Wireless Networking, Tangier, Morocco, 2018: 1–4. doi: 10.1109/MoWNet.2018.8428935.
    HUANG Xumin, YU Rong, KANG Jiawen, et al. Distributed reputation management for secure and efficient vehicular edge computing and networks[J]. IEEE Access, 2017, 5: 25408–25420. doi: 10.1109/ACCESS.2017.2769878
    TRAN T X and POMPILI D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 856–868. doi: 10.1109/TVT.2018.2881191
    JAIN R and PAUL S. Network virtualization and software defined networking for cloud computing: A survey[J]. IEEE Communications Magazine, 2013, 51(11): 24–31. doi: 10.1109/MCOM.2013.6658648
    WILHELMI F, BELLALTA B, CANO C, et al. Implications of decentralized Q-learning resource allocation in wireless networks[C]. The 28th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Montreal, Canada, 2017: 1–5. doi: 10.1109/PIMRC.2017.8292321.
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數(shù):  4142
  • HTML全文瀏覽量:  2138
  • PDF下載量:  254
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-04-30
  • 修回日期:  2019-09-05
  • 網(wǎng)絡(luò)出版日期:  2019-09-18
  • 刊出日期:  2020-03-19

目錄

    /

    返回文章
    返回