基于簽到活躍度和時空概率模型的自適應興趣點推薦方法
doi: 10.11999/JEIT190287
-
1.
燕山大學信息科學與工程學院 秦皇島 066004
-
2.
燕山大學里仁學院 秦皇島 066004
-
3.
河北省計算機虛擬技術與系統(tǒng)集成重點實驗室(燕山大學) 秦皇島 066004
An Adaptive Point-Of-Interest Recommendation Method Based on Check-in Activity and Temporal-Spatial Probabilistic Models
-
1.
School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
-
2.
School of Liren, Yanshan University, Qinhuangdao 066004, China
-
3.
Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province (Yanshan University), Qinhuangdao 066004, China
-
摘要:
針對現(xiàn)有興趣點(POI)推薦算法對不同簽到特征的用戶缺乏自適應性問題,該文提出一種基于用戶簽到活躍度(UCA)特征和時空(TS)概率模型的自適應興趣點推薦方法UCA-TS。利用概率統(tǒng)計分析方法提取用戶簽到的活躍度特征,給出一種用戶不活躍和活躍的隸屬度計算方法。在此基礎上,分別采用結合時間因素的1維冪律函數和2維高斯核密度估計來計算不活躍和活躍特征的概率值,同時融入興趣點流行度來進行推薦。該方法能自適應用戶的簽到特征,并能更準確體現(xiàn)用戶簽到的時間和空間偏好。實驗結果表明,該方法能夠有效提高推薦精度和召回率。
Abstract:Existing Point-Of-Interest (POI) recommendation algorithms lack adaptability for users with different check-in features. To solve this problem, an adaptive POI recommendation method UCA-TS based on User Check-in Activity (UCA) feature and Temporal-Spatial (TS) probabilistic models is proposed. The user check-in activity is extracted using a probabilistic statistical analysis method, and a calculation method of user's inactive and active membership is given. On this basis, one-dimensional power law function and two-dimensional Gaussian kernel density estimation combined with time factor are used to calculate the probability for inactive and active features respectively, and the popularity of POI is incorporated to recommend. This method can adapt to the users' check-in features and reflect the users' check-in temporal-spatial preferences more accurately. The experiments show that the proposed method can effectively improve the recommendation precision and recall.
-
表 1 自適應興趣點推薦算法(UCA-TS)
輸入:簽到數據集UCall,推薦的目標用戶u,時間槽t; (11) for each l∈L-Lu do 輸出:推薦的top-n興趣點 (12) p1(l|Lu,t’)←1; p2(l|Lu,t’)←0; (1) 使用式(1)計算UCNu,式(3)計算Tu; (13) for each li∈Lu,t’ do (2) k←0; 初始化C={c1, c2}和A={aij}; (14) 計算dli,l和p(l|li); (3) repeat (15) 計算 p1(l|Lu,t’)←p1(l|Lu,t’)×p(l|li); (4) k←k+1; (16) 計算 p2(l|Lu,t’); (5) 更新聚類中心C(k)和A(k-1); (17) end for (6) 更新隸屬度矩陣A(k)和聚類中心C(k); (18) 使用式(20)計算pt(l); (7) until 式(5)收斂 (19) end for (8) 返回au={a1u, a2u}; (20) end for (9) for t’=0 to 23 do (21) 使用式(22)計算Pu,t,l; (10) 使用式(21)計算wt’-t; 使用式(15)—式(17)計算H; (22) 排序Pu,t,l并返回top-n興趣點。 下載: 導出CSV
表 2 LBSNs簽到數據集的統(tǒng)計情況
數據集 簽到數 興趣點數 用戶數 每個用戶訪問地點平均數 每個地點的平均訪問數 每個用戶平均簽到數 簽到密度 Foursquare 194108 5596 2321 46 19 84 0.0149 Gowalla 456905 24236 10162 30 13 45 0.0019 下載: 導出CSV
表 3 Foursquare和Gowalla數據集的不活躍和活躍用戶數據統(tǒng)計
數據集 用戶類別 用戶數量 簽到記錄總數 平均簽到記錄數 平均簽到時間槽數 平均簽到地點數 Foursquare 不活躍用戶 1908 88181 46 12 28 活躍用戶 413 105927 256 19 114 Gowalla 不活躍用戶 9756 304621 31 9 21 活躍用戶 406 152284 375 18 204 下載: 導出CSV
表 4 興趣點推薦算法在兩個數據集上的Fβ指標值(β=1)
數據集 Top-n SK UTE+SE TPR+UM SAMM UCA-TS Foursquare top-5 0.0413 0.0435 0.0555 0.0664 0.0749 top-10 0.0344 0.0356 0.0457 0.0597 0.0669 top-20 0.0245 0.0258 0.0398 0.0520 0.0571 Gowalla top-5 0.0399 0.0425 0.0466 0.0592 0.0663 top-10 0.0313 0.0328 0.0394 0.0551 0.0602 top-20 0.0219 0.0229 0.0283 0.0416 0.0450 下載: 導出CSV
-
SI Yali, ZHANG Fuzhi, and LIU Wenyuan. CTF-ARA: An adaptive method for POI recommendation based on check-in and temporal features[J]. Knowledge-Based Systems, 2017, 128: 59–70. doi: 10.1016/j.knosys.2017.04.013 YU Yonghong and CHEN Xingguo. A survey of point-of-interest recommendation in location-based social networks[C]. Trajectory-Based Behavior Analytics: Papers from the 2015 AAAI Workshop, Palo Alto, USA, 2015: 53–60. ZHANG Jiadong and CHOW C Y. CoRe: Exploiting the personalized influence of two-dimensional geographic coordinates for location recommendations[J]. Information Sciences, 2015, 293: 163–181. doi: 10.1016/j.ins.2014.09.014 ZHANG Jiadong and CHOW C Y. Point-of-interest recommendations in location-based social networks[J]. SIGSPATIAL Special, 2015, 7(3): 26–33. doi: 10.1145/2876480.2876486 YUAN Quan, CONG Gao, MA Zongyang, et al. Time-aware point-of-interest recommendation[C]. The 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, 2013: 363?372. doi: 10.1145/2484028.2484030. ZHANG Jiadong and CHOW C Y. TICRec: A probabilistic framework to utilize temporal influence correlations for time-aware location recommendations[J]. IEEE Transactions on Services Computing, 2016, 9(4): 633–646. doi: 10.1109/TSC.2015.2413783 LI Huayu, GE Yong, HONG Richang, et al. Point-of-Interest recommendations: Learning potential check-ins from Friends[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 975–984. doi: 10.1145/2939672.2939767. LIU Bin and XIONG Hui. Point-of-interest recommendation in location based social networks with topic and location awareness[C]. The 2013 SIAM International Conference on Data Mining, Austin, USA, 2013: 396–404. doi: 10.1137/1.9781611972832.44. ZHAO Shenglin, ZHAO Tong, YANG Haiqin, et al. STELLAR: Spatial-temporal latent ranking for successive point-of-interest recommendation[C]. The 30th AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016: 315–321. doi: 10.1007/978-981-13-1349-3_5. 任星怡, 宋美娜, 宋俊德. 基于位置社交網絡的上下文感知的興趣點推薦[J]. 計算機學報, 2017, 40(4): 824–841. doi: 10.11897/SP.J.1016.2017.00824REN Xingyi, SONG Meina, and SONG Junde. Context-aware point-of-interest recommendation in location-based social networks[J]. Chinese Journal of Computers, 2017, 40(4): 824–841. doi: 10.11897/SP.J.1016.2017.00824 YIN Hongzhi, CUI Bin, CHEN Ling, et al. Modeling location-based user rating profiles for personalized recommendation[J]. ACM Transactions on Knowledge Discovery from Data, 2015, 9(3): 1–41. doi: 10.1145/2663356 LIU Bin, XIONG Hui, PAPADIMITRIOU S, et al. A general geographical probabilistic factor model for point of interest recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(5): 1167–1179. doi: 10.1109/TKDE.2014.2362525 LIU Yiding, PHAM T A N, CONG Gao, et al. An experimental evaluation of point-of-interest recommendation in location-based social networks[J]. Proceedings of the VLDB Endowment, 2017, 10(10): 1010–1021. doi: 10.14778/3115404.3115407 YUAN Quan, CONG Gao, and SUN Aixin. Graph-based point-of-interest recommendation with geographical and temporal influences[C]. The 23rd ACM International Conference on Information and Knowledge Management, Shanghai, China, 2014: 659–668. doi: 10.1145/2661829.2661983. 馮浩, 黃坤, 李晶, 等. 基于深度學習的混合興趣點推薦算法[J]. 電子與信息學報, 2019, 41(4): 880–887. doi: 10.11999/JEIT180458FENG Hao, HUANG Kun, LI Jing, et al. Hybrid point of interest recommendation algorithm based on deep learning[J]. Journal of Electronics &Information Technology, 2019, 41(4): 880–887. doi: 10.11999/JEIT180458 ZHENG Haitao, ZHOU Yingmin, LIANG Nan, et al. Exploiting user mobility for time-aware POI recommendation in social networks[J]. IEEE Access, 2017, 99: 1–14. doi: 10.1109/ACCESS.2017.2764074 LIU Shudong and WANG Lei. A self-adaptive point-of-interest recommendation algorithm based on a multi-order Markov model[J]. Future Generation Computer Systems, 2018, 89: 506–514. doi: 10.1016/j.future.2018.07.008 -