一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于簽到活躍度和時空概率模型的自適應興趣點推薦方法

司亞利 張付志 劉文遠

司亞利, 張付志, 劉文遠. 基于簽到活躍度和時空概率模型的自適應興趣點推薦方法[J]. 電子與信息學報, 2020, 42(3): 678-686. doi: 10.11999/JEIT190287
引用本文: 司亞利, 張付志, 劉文遠. 基于簽到活躍度和時空概率模型的自適應興趣點推薦方法[J]. 電子與信息學報, 2020, 42(3): 678-686. doi: 10.11999/JEIT190287
Yali SI, Fuzhi ZHANG, Wenyuan LIU. An Adaptive Point-Of-Interest Recommendation Method Based on Check-in Activity and Temporal-Spatial Probabilistic Models[J]. Journal of Electronics & Information Technology, 2020, 42(3): 678-686. doi: 10.11999/JEIT190287
Citation: Yali SI, Fuzhi ZHANG, Wenyuan LIU. An Adaptive Point-Of-Interest Recommendation Method Based on Check-in Activity and Temporal-Spatial Probabilistic Models[J]. Journal of Electronics & Information Technology, 2020, 42(3): 678-686. doi: 10.11999/JEIT190287

基于簽到活躍度和時空概率模型的自適應興趣點推薦方法

doi: 10.11999/JEIT190287
基金項目: 國家自然科學基金(61379116, 61772452),河北省自然科學基金(F2015203046, F2015501105)
詳細信息
    作者簡介:

    司亞利:女,1981年生,副教授,研究方向為興趣點推薦系統(tǒng)

    張付志:男,1964年生,教授,研究方向為推薦系統(tǒng)

    劉文遠:男,1968年生,教授,研究方向為物聯(lián)網系統(tǒng)

    通訊作者:

    張付志 xjzfz@ysu.edu.cn

  • 中圖分類號: TP391

An Adaptive Point-Of-Interest Recommendation Method Based on Check-in Activity and Temporal-Spatial Probabilistic Models

Funds: The National Natural Science Foundation of China (61379116, 61772452), The Natural Science Foundation of Hebei Province (F2015203046, F2015501105)
  • 摘要:

    針對現(xiàn)有興趣點(POI)推薦算法對不同簽到特征的用戶缺乏自適應性問題,該文提出一種基于用戶簽到活躍度(UCA)特征和時空(TS)概率模型的自適應興趣點推薦方法UCA-TS。利用概率統(tǒng)計分析方法提取用戶簽到的活躍度特征,給出一種用戶不活躍和活躍的隸屬度計算方法。在此基礎上,分別采用結合時間因素的1維冪律函數和2維高斯核密度估計來計算不活躍和活躍特征的概率值,同時融入興趣點流行度來進行推薦。該方法能自適應用戶的簽到特征,并能更準確體現(xiàn)用戶簽到的時間和空間偏好。實驗結果表明,該方法能夠有效提高推薦精度和召回率。

  • 圖  1  兩個數據集中UCN和相應用戶數量統(tǒng)計圖

    圖  2  用戶簽到數量的概率質量函數圖

    圖  3  k對精度和召回率的影響

    圖  4  1維和2維模型對Foursquare數據集中不活躍用戶和活躍用戶的精度和召回率

    圖  5  興趣點推薦算法在兩個數據集上的精度和召回率

    表  1  自適應興趣點推薦算法(UCA-TS)

     輸入:簽到數據集UCall,推薦的目標用戶u,時間槽t;(11) for each lL-Lu do
     輸出:推薦的top-n興趣點(12)  p1(l|Lu,t)←1; p2(l|Lu,t)←0;
     (1) 使用式(1)計算UCNu,式(3)計算Tu;(13)  for each liLu,t do
     (2) k←0; 初始化C={c1, c2}和A={aij};(14)   計算dli,lp(l|li);
     (3) repeat(15)   計算 p1(l|Lu,t)←p1(l|Lu,tp(l|li);
     (4) kk+1;(16)   計算 p2(l|Lu,t);
     (5) 更新聚類中心C(k)和A(k-1);(17)  end for
     (6) 更新隸屬度矩陣A(k)和聚類中心C(k);(18)  使用式(20)計算pt(l);
     (7) until 式(5)收斂(19) end for
     (8) 返回au={a1u, a2u};(20) end for
     (9) for t’=0 to 23 do(21) 使用式(22)計算Pu,t,l;
     (10) 使用式(21)計算wt’-t; 使用式(15)—式(17)計算H;(22) 排序Pu,t,l并返回top-n興趣點。
    下載: 導出CSV

    表  2  LBSNs簽到數據集的統(tǒng)計情況

    數據集簽到數興趣點數用戶數每個用戶訪問地點平均數每個地點的平均訪問數每個用戶平均簽到數簽到密度
    Foursquare194108559623214619840.0149
    Gowalla45690524236101623013450.0019
    下載: 導出CSV

    表  3  Foursquare和Gowalla數據集的不活躍和活躍用戶數據統(tǒng)計

    數據集用戶類別用戶數量簽到記錄總數平均簽到記錄數平均簽到時間槽數平均簽到地點數
    Foursquare不活躍用戶190888181461228
    活躍用戶41310592725619114
    Gowalla不活躍用戶975630462131921
    活躍用戶40615228437518204
    下載: 導出CSV

    表  4  興趣點推薦算法在兩個數據集上的Fβ指標值(β=1)

    數據集Top-nSKUTE+SETPR+UMSAMMUCA-TS
    Foursquaretop-50.04130.04350.05550.06640.0749
    top-100.03440.03560.04570.05970.0669
    top-200.02450.02580.03980.05200.0571
    Gowallatop-50.03990.04250.04660.05920.0663
    top-100.03130.03280.03940.05510.0602
    top-200.02190.02290.02830.04160.0450
    下載: 導出CSV
  • SI Yali, ZHANG Fuzhi, and LIU Wenyuan. CTF-ARA: An adaptive method for POI recommendation based on check-in and temporal features[J]. Knowledge-Based Systems, 2017, 128: 59–70. doi: 10.1016/j.knosys.2017.04.013
    YU Yonghong and CHEN Xingguo. A survey of point-of-interest recommendation in location-based social networks[C]. Trajectory-Based Behavior Analytics: Papers from the 2015 AAAI Workshop, Palo Alto, USA, 2015: 53–60.
    ZHANG Jiadong and CHOW C Y. CoRe: Exploiting the personalized influence of two-dimensional geographic coordinates for location recommendations[J]. Information Sciences, 2015, 293: 163–181. doi: 10.1016/j.ins.2014.09.014
    ZHANG Jiadong and CHOW C Y. Point-of-interest recommendations in location-based social networks[J]. SIGSPATIAL Special, 2015, 7(3): 26–33. doi: 10.1145/2876480.2876486
    YUAN Quan, CONG Gao, MA Zongyang, et al. Time-aware point-of-interest recommendation[C]. The 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, 2013: 363?372. doi: 10.1145/2484028.2484030.
    ZHANG Jiadong and CHOW C Y. TICRec: A probabilistic framework to utilize temporal influence correlations for time-aware location recommendations[J]. IEEE Transactions on Services Computing, 2016, 9(4): 633–646. doi: 10.1109/TSC.2015.2413783
    LI Huayu, GE Yong, HONG Richang, et al. Point-of-Interest recommendations: Learning potential check-ins from Friends[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 975–984. doi: 10.1145/2939672.2939767.
    LIU Bin and XIONG Hui. Point-of-interest recommendation in location based social networks with topic and location awareness[C]. The 2013 SIAM International Conference on Data Mining, Austin, USA, 2013: 396–404. doi: 10.1137/1.9781611972832.44.
    ZHAO Shenglin, ZHAO Tong, YANG Haiqin, et al. STELLAR: Spatial-temporal latent ranking for successive point-of-interest recommendation[C]. The 30th AAAI Conference on Artificial Intelligence, Phoenix, USA, 2016: 315–321. doi: 10.1007/978-981-13-1349-3_5.
    任星怡, 宋美娜, 宋俊德. 基于位置社交網絡的上下文感知的興趣點推薦[J]. 計算機學報, 2017, 40(4): 824–841. doi: 10.11897/SP.J.1016.2017.00824

    REN Xingyi, SONG Meina, and SONG Junde. Context-aware point-of-interest recommendation in location-based social networks[J]. Chinese Journal of Computers, 2017, 40(4): 824–841. doi: 10.11897/SP.J.1016.2017.00824
    YIN Hongzhi, CUI Bin, CHEN Ling, et al. Modeling location-based user rating profiles for personalized recommendation[J]. ACM Transactions on Knowledge Discovery from Data, 2015, 9(3): 1–41. doi: 10.1145/2663356
    LIU Bin, XIONG Hui, PAPADIMITRIOU S, et al. A general geographical probabilistic factor model for point of interest recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(5): 1167–1179. doi: 10.1109/TKDE.2014.2362525
    LIU Yiding, PHAM T A N, CONG Gao, et al. An experimental evaluation of point-of-interest recommendation in location-based social networks[J]. Proceedings of the VLDB Endowment, 2017, 10(10): 1010–1021. doi: 10.14778/3115404.3115407
    YUAN Quan, CONG Gao, and SUN Aixin. Graph-based point-of-interest recommendation with geographical and temporal influences[C]. The 23rd ACM International Conference on Information and Knowledge Management, Shanghai, China, 2014: 659–668. doi: 10.1145/2661829.2661983.
    馮浩, 黃坤, 李晶, 等. 基于深度學習的混合興趣點推薦算法[J]. 電子與信息學報, 2019, 41(4): 880–887. doi: 10.11999/JEIT180458

    FENG Hao, HUANG Kun, LI Jing, et al. Hybrid point of interest recommendation algorithm based on deep learning[J]. Journal of Electronics &Information Technology, 2019, 41(4): 880–887. doi: 10.11999/JEIT180458
    ZHENG Haitao, ZHOU Yingmin, LIANG Nan, et al. Exploiting user mobility for time-aware POI recommendation in social networks[J]. IEEE Access, 2017, 99: 1–14. doi: 10.1109/ACCESS.2017.2764074
    LIU Shudong and WANG Lei. A self-adaptive point-of-interest recommendation algorithm based on a multi-order Markov model[J]. Future Generation Computer Systems, 2018, 89: 506–514. doi: 10.1016/j.future.2018.07.008
  • 加載中
圖(5) / 表(4)
計量
  • 文章訪問數:  3067
  • HTML全文瀏覽量:  1441
  • PDF下載量:  95
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-04-25
  • 修回日期:  2019-10-29
  • 網絡出版日期:  2019-11-11
  • 刊出日期:  2020-03-19

目錄

    /

    返回文章
    返回