一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

曲率差分驅動的極小曲面濾波器

王滿利 田子建 張元剛

王滿利, 田子建, 張元剛. 曲率差分驅動的極小曲面濾波器[J]. 電子與信息學報, 2020, 42(3): 764-771. doi: 10.11999/JEIT190216
引用本文: 王滿利, 田子建, 張元剛. 曲率差分驅動的極小曲面濾波器[J]. 電子與信息學報, 2020, 42(3): 764-771. doi: 10.11999/JEIT190216
Manli WANG, Zijian TIAN, Yuangang ZHANG. Minimal Surface Filter Driven by Curvature Difference[J]. Journal of Electronics & Information Technology, 2020, 42(3): 764-771. doi: 10.11999/JEIT190216
Citation: Manli WANG, Zijian TIAN, Yuangang ZHANG. Minimal Surface Filter Driven by Curvature Difference[J]. Journal of Electronics & Information Technology, 2020, 42(3): 764-771. doi: 10.11999/JEIT190216

曲率差分驅動的極小曲面濾波器

doi: 10.11999/JEIT190216
基金項目: 國家自然科學基金(51674269)
詳細信息
    作者簡介:

    王滿利:男,1981年生,博士生,研究方向為信息與通信工程

    田子建:男,1964年生,教授,研究方向為信息與通信工程

    通訊作者:

    田子建 tianzj0726@126.com

  • 中圖分類號: TN713; TP391.41

Minimal Surface Filter Driven by Curvature Difference

Funds: The National Natural Science Foundation of China (51674269)
  • 摘要:

    為提高全變分圖像降噪模型的降噪性能和邊緣保持性能,該文提出一種曲率差分驅動的極小曲面濾波器。首先,在平均曲率濾波器模型基礎上,引入自適應曲率差分邊緣探測函數(shù),建立曲率差分驅動的極小曲面濾波器模型;接著,從微分幾何理論角度,闡述該能量泛函模型的物理意義和平均曲率能量減小方法;最后,在離散的圖像域,通過迭代的方式使圖像每個像素鄰域內(nèi)的曲面向極小曲面迭代進化,實現(xiàn)能量泛函的平均曲率能量極小化,從而能量泛函的總能量也完成極小化。實驗表明,該濾波器不僅能去除高斯噪聲、椒鹽噪聲,還能去除這兩類噪聲構成的混合噪聲,其降噪性能和邊緣保持性能優(yōu)于同類型的其他5種全變分算法。

  • 圖  1  圖像域Ω分解方法

    圖  2  ui?j鄰域內(nèi)3點的組合關系

    圖  3  dk的近似求解方法

    圖  4  MSF濾波器能量變化曲線

    圖  5  MCF和MSF的降噪比較

    圖  6  相同迭代次數(shù)下兩濾波器降噪結果對比

    圖  7  6種算法的降噪圖像評價指標和運行時間比較

    圖  8  MSF去除混合噪聲的降噪圖像對比

    表  1  降噪圖像的評價指標數(shù)據(jù)

    噪聲類型圖像濾波器噪聲方差噪聲密度迭代次數(shù)PSNR.NPSNR.DCDERFSIM
    高斯噪聲LenaMSF101028.111132.529012.34990.6873
    202022.147228.881912.35750.5065
    MCF101028.111131.248612.31280.6063
    202022.147228.708712.30200.4644
    HouseMSF5734.156035.954911.05430.6838
    101028.107232.453211.05820.5043
    202022.112928.556511.06000.3117
    MCF5734.156033.190111.04360.5879
    101028.107231.181611.04910.4750
    202022.112928.375311.04870.3315
    椒鹽噪聲peppersMSF0.05418.265934.340112.32450.8842
    0.10915.317632.092112.32290.8271
    MCF0.05418.265930.122712.30890.7940
    0.10915.317630.508712.28770.7083
    下載: 導出CSV
  • RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259–268. doi: 10.1016/0167-2789(92)90242-F
    DING Meng, HUANG Tingzhu, WANG Si, et al. Total variation with overlapping group sparsity for deblurring images under Cauchy noise[J]. Applied Mathematics and Computation, 2019, 341: 128–147. doi: 10.1016/j.amc.2018.08.014
    SHEN Zhengwei and CHENG Lishuang. Convex composite wavelet frame and total variation-based image deblurring using nonconvex penalty functions[J]. Journal of Electronic Imaging, 2017, 26(5): 053005. doi: 10.1117/1.JEI.26.5.053005
    郭從洲, 秦志遠, 時文俊. 基于能量泛函和視覺特性的全變分圖像降噪模型[J]. 中國圖象圖形學報, 2014, 19(9): 1282–1287. doi: 10.11834/jig.20140904

    GUO Congzhou, QIN Zhiyuan, and SHI Wenjun. TV image denoising model based on energy functionals and HVS[J]. Journal of Image and Graphics, 2014, 19(9): 1282–1287. doi: 10.11834/jig.20140904
    LIU Zexian, LIU Hongwei, and WANG Xiping. Accelerated augmented Lagrangian method for total variation minimization[J]. Computational and Applied Mathematics, 2019, 38(2): 50–64. doi: 10.1007/s40314-019-0787-7
    GAO Tianling, WANG Xiaofei, LIU Qiang, et al. A fixed-point algorithm for second-order total variation models in image denoising[J]. Computational and Applied Mathematics, 2019, 38(1): 8–22. doi: 10.1007/s40314-019-0763-2
    ZOU Jian, SHEN Marui, ZHANG Ya, et al. Total variation denoising with non-convex regularizers[J]. IEEE Access, 2019, 7: 4422–4431. doi: 10.1109/ACCESS.2018.2888944
    BEN SAID A, HADJIDJ R, and FOUFOU S. Total variation for image denoising based on a novel smart edge detector: An application to medical images[J]. Journal of Mathematical Imaging and Vision, 2019, 61(1): 106–121. doi: 10.1007/s10851-018-0829-6
    LI Mingqiang, HAN Congying, WANG Ruxin, et al. Shrinking gradient descent algorithms for total variation regularized image denoising[J]. Computational Optimization and Applications, 2017, 68(3): 643–660. doi: 10.1007/s10589-017-9931-8
    王宇, 湯心溢, 羅易雪, 等. 自適應Split Bregman迭代的紅外圖像降噪算法[J]. 紅外與毫米波學報, 2014, 33(5): 546–551. doi: 10.3724/SP.J.1010.2014.00546

    WANG Yu, TANG Xinyi, LUO Yixue, et al. IR image denoising algorithm based on adaptive split bregman method[J]. Journal of Infrared and Millimeter Waves, 2014, 33(5): 546–551. doi: 10.3724/SP.J.1010.2014.00546
    FIRSOV D and LUI S H. Domain decomposition methods in image denoising using Gaussian curvature[J]. Journal of Computational and Applied Mathematics, 2006, 193(2): 460–473. doi: 10.1016/j.cam.2005.05.032
    JIDESH P and GEORGE S. Gauss curvature-driven image inpainting for image reconstruction[J]. Journal of the Chinese Institute of Engineers, 2014, 37(1): 122–133. doi: 10.1080/02533839.2012.751332
    ZHU Wei and CHAN T. Image denoising using mean curvature of image surface[J]. SIAM Journal on Imaging Sciences, 2012, 5(1): 1–32. doi: 10.1137/110822268
    GONG Yuanhao. Spectrally regularized surfaces[D]. [Ph.D dissertation], ETH-Zürich, 2015: 127–165. doi: 10.3929/ethz-a-010438292.
    GONG Yuanhao and SBALZARINI I F. Curvature filters efficiently reduce certain variational energies[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1786–1798. doi: 10.1109/tip.2017.2658954
    BAI Yunjiao, ZHANG Quan, HONG Shangguan, et al. Patch similarity modulus and difference curvature based fourth-order partial differential equation for image denoising[J]. Mathematical Problems in Engineering, 2015, 2015: 636295. doi: 10.1155/2015/636295
    YIN Xuehui and ZHOU Shangbo. Image structure-preserving denoising based on difference curvature driven fractional nonlinear diffusion[J]. Mathematical Problems in Engineering, 2015, 2015: 930984. doi: 10.1155/2015/930984
    DONOHO D L and JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425–455. doi: 10.1093/biomet/81.3.425
  • 加載中
圖(8) / 表(1)
計量
  • 文章訪問數(shù):  2466
  • HTML全文瀏覽量:  1010
  • PDF下載量:  64
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-04-04
  • 修回日期:  2019-10-26
  • 網(wǎng)絡出版日期:  2019-11-11
  • 刊出日期:  2020-03-19

目錄

    /

    返回文章
    返回