曲率差分驅動的極小曲面濾波器
doi: 10.11999/JEIT190216
-
1.
中國礦業(yè)大學(北京)機電與信息工程學院 北京 100083
-
2.
河南理工大學物理與電子信息學院 焦作 454000
-
3.
兗礦集團信息化管理中心 鄒城 273500
Minimal Surface Filter Driven by Curvature Difference
-
1.
School of Mechanical Electronic & Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
-
2.
School of Physics &Electronic Information Engineering, HeNan Polytechnic University, Jiaozuo 454000, China
-
3.
Information Center of YanKuang Group, Zoucheng 273500, China
-
摘要:
為提高全變分圖像降噪模型的降噪性能和邊緣保持性能,該文提出一種曲率差分驅動的極小曲面濾波器。首先,在平均曲率濾波器模型基礎上,引入自適應曲率差分邊緣探測函數(shù),建立曲率差分驅動的極小曲面濾波器模型;接著,從微分幾何理論角度,闡述該能量泛函模型的物理意義和平均曲率能量減小方法;最后,在離散的圖像域,通過迭代的方式使圖像每個像素鄰域內(nèi)的曲面向極小曲面迭代進化,實現(xiàn)能量泛函的平均曲率能量極小化,從而能量泛函的總能量也完成極小化。實驗表明,該濾波器不僅能去除高斯噪聲、椒鹽噪聲,還能去除這兩類噪聲構成的混合噪聲,其降噪性能和邊緣保持性能優(yōu)于同類型的其他5種全變分算法。
Abstract:To improve performance of denoising and edge preservation of the total variational image denoising model, a curvature difference driven minimal surface filter is proposed. Firstly, the presented filter model is constructed by adding an adaptive edge detection function of curvature difference to the mean curvature filter model. After that, from the perspective of differential geometry theory, the physical meaning of the energy functional model and the method of reducing the average curvature energy are elaborated. Finally, in the discrete image domain, the surface in the neighborhood of each pixel of the image is iteratively evolved to the minimal surface to minimize the average curvature energy of the energy functional, so that the total energy of the energy functional is also minimized. Experiments show that the filter can not only remove Gauss noise and salt and pepper noise, but also remove the mixed noise composed of these two kinds of noise. Its performance of noise reduction and edge preservation is better than the other five total variational algorithms of the same kind.
-
Key words:
- Image denoising /
- Filter /
- Energy functional /
- Mean curvature /
- Minimal surface
-
表 1 降噪圖像的評價指標數(shù)據(jù)
噪聲類型 圖像 濾波器 噪聲方差噪聲密度 迭代次數(shù) PSNR.N PSNR.D CDE RFSIM 高斯噪聲 Lena MSF 10 10 28.1111 32.5290 12.3499 0.6873 20 20 22.1472 28.8819 12.3575 0.5065 MCF 10 10 28.1111 31.2486 12.3128 0.6063 20 20 22.1472 28.7087 12.3020 0.4644 House MSF 5 7 34.1560 35.9549 11.0543 0.6838 10 10 28.1072 32.4532 11.0582 0.5043 20 20 22.1129 28.5565 11.0600 0.3117 MCF 5 7 34.1560 33.1901 11.0436 0.5879 10 10 28.1072 31.1816 11.0491 0.4750 20 20 22.1129 28.3753 11.0487 0.3315 椒鹽噪聲 peppers MSF 0.05 4 18.2659 34.3401 12.3245 0.8842 0.10 9 15.3176 32.0921 12.3229 0.8271 MCF 0.05 4 18.2659 30.1227 12.3089 0.7940 0.10 9 15.3176 30.5087 12.2877 0.7083 下載: 導出CSV
-
RUDIN L I, OSHER S, and FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/4): 259–268. doi: 10.1016/0167-2789(92)90242-F DING Meng, HUANG Tingzhu, WANG Si, et al. Total variation with overlapping group sparsity for deblurring images under Cauchy noise[J]. Applied Mathematics and Computation, 2019, 341: 128–147. doi: 10.1016/j.amc.2018.08.014 SHEN Zhengwei and CHENG Lishuang. Convex composite wavelet frame and total variation-based image deblurring using nonconvex penalty functions[J]. Journal of Electronic Imaging, 2017, 26(5): 053005. doi: 10.1117/1.JEI.26.5.053005 郭從洲, 秦志遠, 時文俊. 基于能量泛函和視覺特性的全變分圖像降噪模型[J]. 中國圖象圖形學報, 2014, 19(9): 1282–1287. doi: 10.11834/jig.20140904GUO Congzhou, QIN Zhiyuan, and SHI Wenjun. TV image denoising model based on energy functionals and HVS[J]. Journal of Image and Graphics, 2014, 19(9): 1282–1287. doi: 10.11834/jig.20140904 LIU Zexian, LIU Hongwei, and WANG Xiping. Accelerated augmented Lagrangian method for total variation minimization[J]. Computational and Applied Mathematics, 2019, 38(2): 50–64. doi: 10.1007/s40314-019-0787-7 GAO Tianling, WANG Xiaofei, LIU Qiang, et al. A fixed-point algorithm for second-order total variation models in image denoising[J]. Computational and Applied Mathematics, 2019, 38(1): 8–22. doi: 10.1007/s40314-019-0763-2 ZOU Jian, SHEN Marui, ZHANG Ya, et al. Total variation denoising with non-convex regularizers[J]. IEEE Access, 2019, 7: 4422–4431. doi: 10.1109/ACCESS.2018.2888944 BEN SAID A, HADJIDJ R, and FOUFOU S. Total variation for image denoising based on a novel smart edge detector: An application to medical images[J]. Journal of Mathematical Imaging and Vision, 2019, 61(1): 106–121. doi: 10.1007/s10851-018-0829-6 LI Mingqiang, HAN Congying, WANG Ruxin, et al. Shrinking gradient descent algorithms for total variation regularized image denoising[J]. Computational Optimization and Applications, 2017, 68(3): 643–660. doi: 10.1007/s10589-017-9931-8 王宇, 湯心溢, 羅易雪, 等. 自適應Split Bregman迭代的紅外圖像降噪算法[J]. 紅外與毫米波學報, 2014, 33(5): 546–551. doi: 10.3724/SP.J.1010.2014.00546WANG Yu, TANG Xinyi, LUO Yixue, et al. IR image denoising algorithm based on adaptive split bregman method[J]. Journal of Infrared and Millimeter Waves, 2014, 33(5): 546–551. doi: 10.3724/SP.J.1010.2014.00546 FIRSOV D and LUI S H. Domain decomposition methods in image denoising using Gaussian curvature[J]. Journal of Computational and Applied Mathematics, 2006, 193(2): 460–473. doi: 10.1016/j.cam.2005.05.032 JIDESH P and GEORGE S. Gauss curvature-driven image inpainting for image reconstruction[J]. Journal of the Chinese Institute of Engineers, 2014, 37(1): 122–133. doi: 10.1080/02533839.2012.751332 ZHU Wei and CHAN T. Image denoising using mean curvature of image surface[J]. SIAM Journal on Imaging Sciences, 2012, 5(1): 1–32. doi: 10.1137/110822268 GONG Yuanhao. Spectrally regularized surfaces[D]. [Ph.D dissertation], ETH-Zürich, 2015: 127–165. doi: 10.3929/ethz-a-010438292. GONG Yuanhao and SBALZARINI I F. Curvature filters efficiently reduce certain variational energies[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1786–1798. doi: 10.1109/tip.2017.2658954 BAI Yunjiao, ZHANG Quan, HONG Shangguan, et al. Patch similarity modulus and difference curvature based fourth-order partial differential equation for image denoising[J]. Mathematical Problems in Engineering, 2015, 2015: 636295. doi: 10.1155/2015/636295 YIN Xuehui and ZHOU Shangbo. Image structure-preserving denoising based on difference curvature driven fractional nonlinear diffusion[J]. Mathematical Problems in Engineering, 2015, 2015: 930984. doi: 10.1155/2015/930984 DONOHO D L and JOHNSTONE J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425–455. doi: 10.1093/biomet/81.3.425 -