一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于迭代模糊聚類算法與K近鄰和數(shù)據(jù)字典的集成TSK模糊分類器

張雄濤 蔣云良 潘興廣 胡文軍 王士同

張雄濤, 蔣云良, 潘興廣, 胡文軍, 王士同. 基于迭代模糊聚類算法與K近鄰和數(shù)據(jù)字典的集成TSK模糊分類器[J]. 電子與信息學報, 2020, 42(3): 746-754. doi: 10.11999/JEIT190214
引用本文: 張雄濤, 蔣云良, 潘興廣, 胡文軍, 王士同. 基于迭代模糊聚類算法與K近鄰和數(shù)據(jù)字典的集成TSK模糊分類器[J]. 電子與信息學報, 2020, 42(3): 746-754. doi: 10.11999/JEIT190214
Xiongtao ZHANG, Yunliang JIANG, Xingguang PAN, Wenjun HU, Shitong WANG. Iterative Fuzzy C-means Clustering Algorithm & K-Nearest Neighbor and Dictionary Data Based Ensemble TSK Fuzzy Classifiers[J]. Journal of Electronics & Information Technology, 2020, 42(3): 746-754. doi: 10.11999/JEIT190214
Citation: Xiongtao ZHANG, Yunliang JIANG, Xingguang PAN, Wenjun HU, Shitong WANG. Iterative Fuzzy C-means Clustering Algorithm & K-Nearest Neighbor and Dictionary Data Based Ensemble TSK Fuzzy Classifiers[J]. Journal of Electronics & Information Technology, 2020, 42(3): 746-754. doi: 10.11999/JEIT190214

基于迭代模糊聚類算法與K近鄰和數(shù)據(jù)字典的集成TSK模糊分類器

doi: 10.11999/JEIT190214
基金項目: 國家自然科學基金(61572236, 61300151, 61772198, 61771193),中央高?;究蒲袠I(yè)務費專項資金(JUDCF13030)
詳細信息
    作者簡介:

    張雄濤:男,1984年生,博士,研究方向為模式識別、模糊系統(tǒng)

    蔣云良:男,1967年生,教授,主要研究方向為智能計算、數(shù)據(jù)挖掘

    潘興廣:男,1979年生,博士,研究方向為神經(jīng)網(wǎng)絡(luò)、數(shù)據(jù)挖掘

    胡文軍:男,1977年生,教授,主要研究方向為機器學習、模式識別

    王士同:男,1964年生,教授,博士生導師,主要研究方向為模式識別、人工智能

    通訊作者:

    張雄濤 1047897965@qq.com

  • 中圖分類號: TP391

Iterative Fuzzy C-means Clustering Algorithm & K-Nearest Neighbor and Dictionary Data Based Ensemble TSK Fuzzy Classifiers

Funds: The National Natural Science Foundation of China (61572236, 61300151, 61772198, 61771193), The Fundamental Research Funds of the Central Universities (JUDCF13030)
  • 摘要:

    該文提出一種新型的集成TSK模糊分類器(IK-D-TSK),首先通過并行學習的方式組織所有0階TSK模糊子分類器,然后每個子分類器的輸出被擴充到原始(驗證)輸入空間,最后通過提出的迭代模糊聚類算法(IFCM)作用在增強驗證集上生成數(shù)據(jù)字典,從而利用KNN對測試數(shù)據(jù)進行快速預測。IK-D-TSK具有以下優(yōu)點:在IK-D-TSK中,每個0階TSK子分類器的輸出被擴充到原始入空間,以并行方式打開原始(驗證)輸入空間中存在的流形結(jié)構(gòu),根據(jù)堆棧泛化原理,可以保證提高分類精度;和傳統(tǒng)TSK模糊分類器相比,IK-D-TSK以并行方式訓練所有的子分類器,因此運行速度可以得到有效保證;由于IK-D-TSK是在以IFCM & KNN所獲得的數(shù)據(jù)字典的基礎(chǔ)上進行分類的,因此具有強魯棒性。理論和實驗驗證了模糊分類器IK-D-TSK具有較高的分類性能、強魯棒性和高可解釋性。

  • 圖  1  IK-D-TSK的框架

    圖  2  IFCM & KNN

    圖  3  分類器在各數(shù)據(jù)集上的測試精度

    圖  4  模糊分類器在各數(shù)據(jù)集上的模糊規(guī)則數(shù)

    表  1  IFCM算法

     輸入:數(shù)據(jù)集${ { X} } = \{ { { { x} }_1},{ { { x} }_2}, ··· ,{ { { x} }_N}\} \in {R^{N \times D} }$,及其標簽$ { { Y} } = $    $\{ {y_1},{y_2}, ··· ,{y_N}\} $,真實類別數(shù)Q,每一類的聚類中心點數(shù)
        c,每一類的樣本數(shù)${N_1},{N_2}, ··· ,{N_Q}$,最大誤差閾值$\tau $。
     輸出:中心點矩陣${{V}}$及其標簽。
     (1)通過FCM初始化每類中的中心點,然后形成中心點矩陣${{ V}}$。
       初始化q=1,其中$1 \le q \le Q$。
     (2)重復;
      (a)重復;
      ?、佼?i \in \left\{ {1,2, ··· ,{N_q}} \right\}$時,通過式(12)和式(13)計算隸屬度
        ${\mu ^q}\left( {{{ x}}_i^q,{{ v}}_j^q} \right)$;當$ i \in \{ {N_q}{\rm{ + }}1,{N_q}{\rm{ + 2}}, ··· ,{N_q}{\rm{ + }}$$\left( {Q - 1} \right) \cdot c \}$
        時,通過式(14)和式(15)計算隸屬度${\mu ^q}\left( {{{ v}}_i^{\bar q},{{ v}}_j^q} \right)$;
      ?、谕ㄟ^式(17)計算中心點${{ v}}_j^q$;
      (b)直到中心點矩陣保持幾乎不變或達到內(nèi)部迭代的最大次數(shù)
        為止;
      (c)利用${{ v}}_j^q$更新中心點矩陣${{ V}}$,并且$q = ( q + $$ 1 ){\rm{ mod }}\;Q$;
     (3)直到$\mathop {\max }\limits_{j \in \left\{ {1,2, ··· ,Q \cdot c} \right\}} \left\| {{{ v}}_j^q - {{ v}}_j^{q - 1}} \right\| < \tau $或達到外部最大迭代次
       數(shù)為止;
     (4)根據(jù)中心點矩陣${{ V}}$輸出所有的中心點及其標簽。
    下載: 導出CSV

    表  2  IK-D-TSK學習算法

     輸入:訓練數(shù)據(jù)集${ {{D} }_{\rm tr} }{\rm{ = } }\left[ { { {{X} }_{\rm tr} }\;{ {{Y} }_{\rm tr} } } \right]$,驗證數(shù)據(jù)集${{{D}}_v}{\rm{ = }}\left[ {{{{X}}_v}\;{{{Y}}_v}} \right]$,    其中${ {{X} }_{\rm tr} }$和${{{X}}_v}$分別表示訓練數(shù)據(jù)和驗證數(shù)據(jù),對應的標
        簽集為${ {{Y} }_{\rm tr} }$和${{{Y}}_v}$,子分類器數(shù)$L$, ${K_1},{K_2}, ··· ,{K_L}$表示每
        個子分類器的模糊規(guī)則數(shù)
     輸出:IK-D-TSK的結(jié)構(gòu),數(shù)據(jù)字典
     訓練過程
     (1)初始化:為每個子分類器從${{{D}}_{\rm tr}}$中隨機抽樣訓練數(shù)據(jù)子集
       ${{{D}}_1},{{{D}}_2}, \!···\! ,{{{D}}_L}$,并且${{{D}}_1} \cup {{{D}}_2} \cup ······ \cup $${{{D}}_L}={{{D}}_{\rm tr}} $
     (2)并行訓練L個零階TSK模糊子分類器;
      (a)為每個子分類器分配模糊規(guī)則數(shù);
      (b)構(gòu)造5個高斯型隸屬度函數(shù),在每一維上從中心點集合{0,
        0.25, 0.50, 0.75, 1.00}中隨機指定一個值并構(gòu)造規(guī)則組合矩
        陣${{{ \varTheta }}_l}{\rm{ = }}{[\upsilon _{ik}^l]_{{K_l} \times d}}$. 通過給每個元素分配一個隨機正數(shù)來構(gòu)
        造核寬度矩陣${{{ \varPhi }}_l}= {\rm{ [}}\delta _{ik}^l{{\rm{]}}_{{K_l} \times d}}$,利用式(2)計算模糊隸屬度,
        正則化并構(gòu)造矩陣
    $ \qquad{ {{X} }_g} = \left[ {\begin{array}{*{20}{c} }\tilde \omega _1^1 & \tilde \omega _1^2 & ··· & \tilde \omega _1^{ {K_l} }\\\tilde \omega _2^1 & \tilde \omega _2^2 & ···& \tilde \omega _2^{ {K_l} }\\ \vdots & \vdots & \ddots & \vdots \\\tilde \omega _{ {N_l} }^1 & \tilde \omega _{ {N_l} }^2 &··· & \tilde \omega _{ {N_l} }^{ {K_l} }\end{array} } \right]_{ {N_l} \times {K_l} } \qquad\quad (18)$
      通過LLM計算后件參數(shù)${{{ a}}_g}$,即
    $\qquad\qquad\qquad\ { {{a} }_{\rm g} } = {\left( \left( { {1 / C} } \right){{I} } + { {{X} }_{\rm g}^{\rm T} }{ {{X} }_{\rm g}}\right)^{ - 1} } {{X} }_{\rm g}^{\rm T} {{y} } \qquad\qquad\qquad\ \ (19)$
      其中${{ I}}$是$K \times K$單位矩陣,C是給定的正則化參數(shù);
      (c)通過式(3)生成L個子分類器的輸出函數(shù)${F_1}\left( {{ x}} \right),{F_2}\left( {{ x}} \right), $   $ ··· ,{F_L}\left( {{ x}} \right)$;
     (3)生成增強驗證數(shù)據(jù)集;
     對于驗證數(shù)據(jù)集的每個樣本,計算對應每個輸出函數(shù)${F_1}\left( {{ x}} \right)$, $ {F_2}\left( {{ x}} \right), ··· ,{F_L}\left( {{ x}} \right)$的值并將其作為增強特征,將原始特征和增強 特征合并,從而形成增強驗證數(shù)據(jù)集${{ D}}_v^{\rm new}{\rm{ = }}\left[ {{{{ X}}_v}\;{{{\bar { X}}}_v}\;{{{ Y}}_v}} \right]$,其中 ${{\bar { X}}_v}$表示驗證數(shù)據(jù)的增強特征集;
     (4)生成數(shù)據(jù)字典;
     在${ { D} }_v^{\rm new}$上調(diào)用IFCM算法后,生成代表性的中心點及其對應的
     標簽,去掉增強特征,即得到數(shù)據(jù)字典。
     預測過程
     (1)對于任何測試樣本,利用KNN方法在數(shù)據(jù)字典上找到最近的
       k個點,基于投票策略,確定其類標;
     (2)輸出測試樣本的標簽。
    下載: 導出CSV

    表  3  數(shù)據(jù)集

    數(shù)據(jù)集類別數(shù)特征數(shù)樣本數(shù)
    SATimage(SAT)6366435
    MUShroom(MUS)2228124
    WAVeform3(WAV)3215000
    PENBased(PENB)101610992
    WDBc(WDB)214569
    ADUlt(ADU)21448841
    下載: 導出CSV

    表  4  IK-D-TSK參數(shù)設(shè)置

    數(shù)據(jù)集分類器規(guī)則數(shù)數(shù)據(jù)字典
    (WDB)32~153~4
    (WAV)1.10~120
    2.15~140
    3.18~160
    17~20
    (PENB)10~13
    (SAT)51.5~90
    2.8~120
    3.10~150
    4.13~170
    5.15~190
    10~13
    (ADU)40~45
    (MUS)20~23
    下載: 導出CSV

    表  5  各分類器運行時間比較結(jié)果(s)

    數(shù)據(jù)集Zero-order-TSK-FC[1]First-order-TSK-FC[14]IFCM-KNN-CDBN[18]BLS[19]IK-D-TSK
    5%噪音10%噪音5%噪音10%噪音5%噪音10%噪音5%噪音10%噪音5%噪音10%噪音5%噪音10%噪音
    訓練時間訓練時間訓練時間訓練時間訓練時間訓練時間訓練時間訓練時間訓練時間訓練時間訓練時間訓練時間
    測試時間測試時間測試時間測試時間測試時間測試時間測試時間測試時間測試時間測試時間測試時間測試時間
    WDB0.0216
    (0.0039)
    0.0224
    (0.0057)
    0.0237
    (0.0034)
    0.0243
    (0.0023)
    0.0162
    (0.0019)
    0.0141
    (0.0018)
    4.1844
    (0.1861)
    4.1555
    (0.1592)
    0.0122
    (0.0013)
    0.0122
    (0.0011)
    0.0209
    (0.0032)
    0.0205
    (0.0023)
    0.00040.00050.00040.00040.00160.00160.00860.00790.01020.01040.00210.0020
    WAV0.7982
    (0.0256)
    0.7984
    (0.0346)
    3.8207
    (0.0719)
    4.1065
    (0.2303)
    0.2863
    (0.0222)
    0.2808
    (0.0181)
    35.4047
    (0.2407)
    35.2445
    (0.1511)
    0.0256
    (0.0028)
    0.0261
    (0.0016)
    0.3333
    (0.0366)
    0.3130
    (0.0409)
    0.00500.00710.00590.01120.01280.01290.04300.03910.01550.01700.01430.0142
    PENB0.9656
    (0.0181)
    0.9794
    (0.0320)
    3.7465
    (0.1615)
    3.9261
    (0.1764)
    0.5067
    (0.0225)
    0.4809
    (0.0151)
    15.1945
    (0.1656)
    15.2313
    (0.1790)
    0.0189
    (0.0013)
    0.0191
    (0.0012)
    0.6105
    (0.0372)
    0.5659
    (0.0323)
    0.00980.00970.01960.02240.03530.03110.00860.00860.01240.01250.03520.0340
    MUS0.9496
    (0.0230)
    0.9965
    (0.0377)
    7.6208
    (0.2844)
    8.1693
    (0.2367)
    0.8053
    (0.0629)
    0.8124
    (0.0223)
    47.1515
    (0.2267)
    47.3102
    (0.3248)
    0.0323
    (0.0038)
    0.0321
    (0.0032)
    0.9432
    (0.0415)
    0.9513
    (0.0323)
    0.01230.01250.02830.03610.02530.02310.04690.06020.01890.01870.02410.0244
    SAT1.2282
    (0.0720)
    1.2301
    (0.0738)
    13.3579
    (0.4825)
    14.2199
    (0.6745)
    0.3393
    (0.0262)
    0.3221
    (0.0134)
    338.383
    (1.2035)
    346.9789
    (4.4332)
    0.1491
    (0.0052)
    0.1578
    (0.0099)
    0.4881
    (0.0441)
    0.4528
    (0.0383)
    0.00730.00620.01670.02540.01830.01840.24920.20390.06440.06580.02090.0209
    ADU5.9016
    (0.1901)
    6.0366
    (0.1239)
    15.9947
    (0.8757)
    17.3695
    (0.8218)
    3.1255
    (0.0415)
    3.0311
    (0.0215)
    56.4922
    (0.3625)
    64.3266
    (0.6555)
    0.0337
    (0.0028)
    0.0389
    (0.0051)
    5.9502
    (0.7296)
    5.5299
    (0.5056)
    0.03220.03700.07680.10470.11260.11270.03050.06560.02000.02300.15490.1536
    下載: 導出CSV

    表  6  WDB數(shù)據(jù)集在IK-D-TSK上生成的數(shù)據(jù)字典

    ${{{ \upsilon }}_{1,1}} = [0.3221,0.6299,0.3633,0.3023,0.5487,0.5950,0.5260,0.3796,0.4162,0.4037,0.5162,0.2613,0.7203,0.4236, - 1]{\rm{ }}$
    ${{{ \upsilon }}_{1,2}} = [0.3589,0.5702,0.3630,0.2741,0.5715,0.5258,0.5245,0.4388,0.4216,0.3926,0.4954,0.2346,0.5913,0.3333, - 1]{\rm{ }}$
    ${{{ \upsilon }}_{1,3}} = [0.2962,0.5501,0.4035,0.2355,0.5358,0.5635,0.5233,0.4925,0.3430,0.3778,0.5045,0.4081,0.7043,0.5754, - 1]$
    ${{{ \upsilon }}_{2,1}}{\rm{ = [}}0.3555,0.5604,0.3788,0.2586,0.5516,0.5644,0.5155,0.4579,0.4592,0.3885,0.5256,0.3284,0.5952,0.1384{\rm{,1]}}$
    ${{{ \upsilon }}_{2,2}} = [0.3646,0.3985,0.2364,0.2755,0.4574,0.5489,0.4467,0.4598,0.3965,0.4276,0.4772,0.4100,0.4240,0.2729,1]$
    ${{{ \upsilon }}_{2,3}} = [0.3582,0.6097,0.2785,0.3392,0.3736,0.6051,0.5651,0.4549,0.4203,0.3447,0.4312,0.4583,0.5412,0.1683,1]$
    下載: 導出CSV
  • TEH C Y, KERK Y W, TAY K M, et al. On modeling of data-driven monotone zero-order TSK fuzzy inference systems using a system identification framework[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(6): 3860–3874. doi: 10.1109/TFUZZ.2018.2851258
    PEDRYCZ W and GOMIDE F. Fuzzy Systems Engineering: Toward Human-Centric Computing[M]. Hoboken, NJ: Wiley, 2007: 85–101.
    TAKAGI T and SUGENO M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15(1): 116–132. doi: 10.1109/TSMC.1985.6313399
    TAO Dapeng, CHENG Jun, YU Zhengtao, et al. Domain-weighted majority voting for crowdsourcing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(1): 163–174. doi: 10.1109/TNNLS.2018.2836969
    HU Mengqiu, YANG Yang, SHEN Fumin, et al. Robust Web image annotation via exploring multi-facet and structural knowledge[J]. IEEE Transactions on Image Processing, 2017, 26(10): 4871–4884. doi: 10.1109/TIP.2017.2717185
    ZHANG Yuanpeng, ISHIBUCHI H, and WANG Shitong. Deep Takagi-Sugeno-Kang fuzzy classifier with shared linguistic fuzzy rules[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(3): 1535–1549. doi: 10.1109/TFUZZ.2017.2729507
    CORDON O, HERRERA F, and ZWIR I. Linguistic modeling by hierarchical systems of linguistic rules[J]. IEEE Transactions on Fuzzy Systems, 2002, 10(1): 2–20. doi: 10.1109/91.983275
    NASCIMENTO D S C, BANDEIRA D R C, CANUTO A M P, et al. Investigating the impact of diversity in ensembles of multi-label classifiers[C]. 2018 International Joint Conference on Neural Networks, Rio de Janeiro, Brazil, 2018: 1–8. doi: 10.1109/IJCNN.2018.8489660.
    BISHOP C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006: 51–75.
    王士同, 鐘富禮. 最小學習機[J]. 江南大學學報: 自然科學版, 2010, 9(5): 505–510. doi: 10.3969/j.issn.1671-7147.2010.05.001

    WANG Shitong and CHUNG K F L. On least learning machine[J]. Journal of Jiangnan University:Natural Science Edition, 2010, 9(5): 505–510. doi: 10.3969/j.issn.1671-7147.2010.05.001
    TUR G, DENG Li and HAKKANI-TüR D, et al. Towards deeper understanding: Deep convex networks for semantic utterance classification[C]. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 5045-5048. doi: 10.1109/ICASSP.2012.6289054.
    WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241–259. doi: 10.1016/s0893-6080(05)80023-1
    ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338–353. doi: 10.1016/S0019-9958(65)90241-X
    DENG Zhaohong, JIANG Yizhang, CHUNG F L, et al. Knowledge-leverage-based fuzzy system and its modeling[J]. IEEE Transactions on Fuzzy Systems, 2013, 21(4): 597–609. doi: 10.1109/TFUZZ.2012.2212444
    GU Xin, CHUNG F L, ISHIBUCHI H, et al. Multitask coupled logistic regression and its fast implementation for large multitask datasets[J]. IEEE Transactions on Cybernetics, 2015, 45(9): 1953–1966. doi: 10.1109/TCYB.2014.2362771
    BACHE K and LICHMAN M. UCI machine learning repository[EB/OL]. http://archive.ics.uci.edu/ml, 2015.
    ALCALá-FDEZ J, FERNáNDEZ A, LUENGO J, et al. KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework[J]. Journal of Multiple-Valued Logic & Soft Computing, 2011, 17(2/3): 255–287.
    HINTON G E, OSINDERO S, and TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527–1554. doi: 10.1162/neco.2006.18.7.1527
    CHEN C L P and LIU Zhulin. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10–24. doi: 10.1109/TNNLS.2017.2716952
  • 加載中
圖(4) / 表(6)
計量
  • 文章訪問數(shù):  3195
  • HTML全文瀏覽量:  1477
  • PDF下載量:  78
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-04-03
  • 修回日期:  2019-11-08
  • 網(wǎng)絡(luò)出版日期:  2019-11-18
  • 刊出日期:  2020-03-19

目錄

    /

    返回文章
    返回