一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于Lyapunov優(yōu)化的隱私感知計(jì)算卸載方法

趙星 彭建華 游偉

趙星, 彭建華, 游偉. 基于Lyapunov優(yōu)化的隱私感知計(jì)算卸載方法[J]. 電子與信息學(xué)報(bào), 2020, 42(3): 704-711. doi: 10.11999/JEIT190170
引用本文: 趙星, 彭建華, 游偉. 基于Lyapunov優(yōu)化的隱私感知計(jì)算卸載方法[J]. 電子與信息學(xué)報(bào), 2020, 42(3): 704-711. doi: 10.11999/JEIT190170
Xing ZHAO, Jianhua PENG, Wei YOU. A Privacy-aware Computation Offloading Method Based on Lyapunov Optimization[J]. Journal of Electronics & Information Technology, 2020, 42(3): 704-711. doi: 10.11999/JEIT190170
Citation: Xing ZHAO, Jianhua PENG, Wei YOU. A Privacy-aware Computation Offloading Method Based on Lyapunov Optimization[J]. Journal of Electronics & Information Technology, 2020, 42(3): 704-711. doi: 10.11999/JEIT190170

基于Lyapunov優(yōu)化的隱私感知計(jì)算卸載方法

doi: 10.11999/JEIT190170
基金項(xiàng)目: 國(guó)家重點(diǎn)研發(fā)計(jì)劃網(wǎng)絡(luò)空間安全專項(xiàng)(2016YFB0801605),國(guó)家自然科學(xué)基金創(chuàng)新群體項(xiàng)目(61521003),國(guó)家自然科學(xué)基金(61801515)
詳細(xì)信息
    作者簡(jiǎn)介:

    趙星:男,1990年生,博士生,研究方向?yàn)橐苿?dòng)通信網(wǎng)安全、隱私保護(hù)技術(shù)

    彭建華:男,1966年生,教授、博士生導(dǎo)師,主要研究方向?yàn)闊o(wú)線移動(dòng)通信網(wǎng)絡(luò)、信息安全

    游偉:男,1984年生,博士,講師,主要研究方向?yàn)橐苿?dòng)通信網(wǎng)絡(luò)安全、新一代移動(dòng)通信網(wǎng)絡(luò)技術(shù)

    通訊作者:

    趙星 ndsc_zx@163.com

  • 中圖分類號(hào): TP393.08

A Privacy-aware Computation Offloading Method Based on Lyapunov Optimization

Funds: The National Key R&D Program Cyberspace Security Special (2016YFB0801605), The National Natural Science Foundation Innovative Groups Project of China (61521003), The National Natural Science Foundation of China(61801515)
  • 摘要:

    移動(dòng)邊緣計(jì)算(MEC)中計(jì)算卸載決策可能暴露用戶特征,導(dǎo)致用戶被鎖定。針對(duì)此問(wèn)題,該文提出一種基于Lyapunov優(yōu)化的隱私感知計(jì)算卸載方法。首先,該方法定義卸載任務(wù)中的隱私量,并引入隱私限制使各MEC節(jié)點(diǎn)上卸載任務(wù)的累積隱私量盡可能??;然后,提出假任務(wù)機(jī)制權(quán)衡終端能耗和隱私保護(hù)的關(guān)系,當(dāng)系統(tǒng)因隱私限制無(wú)法正常執(zhí)行計(jì)算卸載時(shí),在MEC節(jié)點(diǎn)生成虛假的卸載任務(wù)以降低累積隱私量;最后,建立隱私感知計(jì)算卸載模型,并基于Lyapunov優(yōu)化原理求解。仿真結(jié)果表明,基于Lyapunov優(yōu)化的隱私感知卸載算法(LPOA)能使用戶的累積隱私量穩(wěn)定在0附近,且總卸載頻率與不考慮隱私的決策一致,有效保護(hù)了用戶隱私,同時(shí)保持了較低的平均能耗。

  • 圖  1  系統(tǒng)模型

    圖  2  隱私量變化分析

    圖  3  不同時(shí)隙個(gè)數(shù)下平均能耗對(duì)比

    圖  4  各算法的卸載決策

    圖  5  變量V 的影響

    圖  6  MEC數(shù)量的影響

    表  1  LPOA

     初始化:設(shè)置各MEC節(jié)點(diǎn)的累積隱私量$Q{\rm{(}}t{\rm{) = 0}}$
     (1) For t=1,2, ···,T Do
     (2) 觀察當(dāng)前無(wú)線信道增益${\rm{\{ }}h_k^2{\rm{(}}t{\rm{)\} }}_{k = 1}^{{N_{{\rm{MEC}}}}}$和任務(wù)截止時(shí)間$\xi (t)$;
     (3) 根據(jù)策略1計(jì)算${f^*}{\rm{(}}t{\rm{)}},E_{\rm{L}}^*{\rm{(}}t{\rm{)}},\left[ {p_k^*{\rm{(}}t{\rm{)}},E_k^*{\rm{(}}t{\rm{)}}} \right]_{k = 1}^{{N_{{\rm{MEC}}}}}$;
     (4) 根據(jù)式(9)獲得MEC節(jié)點(diǎn)候選集$M{\rm{(}}t{\rm{)}}$;
     (5) If $\left( {M{\rm{(}}t{\rm{) = }}\varnothing } \right)||\left( {E_{\rm{L}}^*{\rm{(}}t{\rm{)}} < E_{{k_{{\rm{min}}}}}^*{\rm{(}}t{\rm{)}}} \right)$
     (6)   If ${f^*}{\rm{(}}t{\rm{) > }}{f_{{\rm{max}}}}$丟棄任務(wù),$E{\rm{(}}t{\rm{) = }}{E_0}$;
     (7)   Else 本地處理,$E{\rm{(}}t{\rm{) = }}E_{\rm{L}}^*{\rm{(}}t{\rm{)}}$;
     (8)   End If
     (9) Else
     (10)   根據(jù)式(2)求得隱私量$q(t)$;
     (11)   根據(jù)策略2求得最優(yōu)解${\alpha ^*}{\rm{(}}t{\rm{)}}$;
     (12)   根據(jù)${\alpha ^*}{\rm{(}}t{\rm{)}}$執(zhí)行卸載并根據(jù)式(5)更新隱私量$Q{\rm{(}}t{\rm{)}}$;
     (13) End If
     (14) End For
    下載: 導(dǎo)出CSV

    表  2  參數(shù)設(shè)置

    參數(shù)取值
    單位時(shí)隙長(zhǎng)度${l_s}$1 ms
    信道增益$h_k^2$服從指數(shù)分布,均值$\overline {h_k^2} $–90 dB
    信道增益$h_k^2$服從指數(shù)分布,量化步長(zhǎng)${\delta _{h_k^2}}$$\overline {h_k^2} /100$
    上行鏈路帶寬$W$1 MHz
    噪聲功率密度${N_0}$${10^{ - 19}}\;{\rm{W/Hz}}$
    CPU最大頻率${f_{\max}}$1.5 GHz
    能耗系數(shù)$\kappa $${10^{ - 28}}$[16]
    終端天線最大發(fā)射功率${p_{\max}}$1 W
    任務(wù)大小b${10^3}$ bit
    處理1 bit數(shù)據(jù)所需CPU循環(huán)數(shù)$\beta $700
    任務(wù)截止時(shí)間$\xi {\rm{(}}t{\rm{)}}$服從均勻分布$\left\{ {0.1{l_s},0.2{l_s}, ··· ,{l_s}} \right\}$
    任務(wù)丟棄代價(jià)E0$10 \cdot \kappa \beta bf_{{\rm{max}}}^2$
    下載: 導(dǎo)出CSV
  • JI Xinsheng, HUANG Kaizhi, JIN Liang, et al. Overview of 5G security technology[J]. Science China Information Sciences, 2018, 61(8): 081301. doi: 10.1007/s11432-017-9426-4
    ABBAS N, ZHANG Yan, TAHERKORDI A, et al. Mobile edge computing: A survey[J]. IEEE Internet of Things Journal, 2018, 5(1): 450–465. doi: 10.1109/JIOT.2017.2750180
    FLORES H, HUI Pan, TARKOMA S, et al. Mobile code offloading: From concept to practice and beyond[J]. IEEE Communications Magazine, 2015, 53(3): 80–88. doi: 10.1109/MCOM.2015.7060486
    MACH P and BECVAR Z. Mobile edge computing: A survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628–1656. doi: 10.1109/COMST.2017.2682318
    MENG Xianling, WANG Wei, WANG Yitu, et al. Delay-optimal computation offloading for computation-constrained mobile edge networks[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 1–7. doi: 10.1109/GLOCOM.2018.8647703.
    MAO Yuyi, ZHANG Jun, and LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3590–3605. doi: 10.1109/JSAC.2016.2611964
    ZHANG Guanglin, ZHANG Wenqian, CAO Yu, et al. Energy-delay tradeoff for dynamic offloading in mobile-edge computing system with energy harvesting devices[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4642–4655. doi: 10.1109/TII.2018.2843365
    ZHANG Peiyun, ZHOU Mengchu, and FORTINO G. Security and trust issues in Fog computing: A survey[J]. Future Generation Computer Systems, 2018, 88: 16–27. doi: 10.1016/j.future.2018.05.008
    NI Jianbing, ZHANG Aiqing, LIN Xiaodong, et al. Security, privacy, and fairness in fog-based vehicular crowdsensing[J]. IEEE Communications Magazine, 2017, 55(6): 146–152. doi: 10.1109/MCOM.2017.1600679
    HE Xiaofan, LIU Juan, JIN Richeng, et al. Privacy-aware offloading in mobile-edge computing[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. doi: 10.1109/GLOCOM.2017.8253985.
    MIN Minghui, WAN Xiaoyue, XIAO Liang, et al. Learning-based privacy-aware offloading for healthcare IoT with energy harvesting[J]. IEEE Internet of Things Journal, 2019, 6(3): 4307–4316. doi: 10.1109/JIOT.2018.2875926
    HE Xiaofan, JIN Richeng, and DAI Huaiyu. Deep PDS-learning for privacy-aware offloading in MEC-enabled IoT[J]. IEEE Internet of Things Journal, 2019, 6(3): 4547–4555. doi: 10.1109/JIOT.2018.2878718
    HE Ting, CIFTCIOGLU E N, WANG Shiqiang, et al. Location privacy in mobile edge clouds: A chaff-based approach[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11): 2625–2636. doi: 10.1109/JSAC.2017.2760179
    MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    LIN Xue, WANG Yanzhi, CHANG N, et al. Concurrent task scheduling and dynamic voltage and frequency scaling in a real-time embedded system with energy harvesting[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(11): 1890–1902. doi: 10.1109/TCAD.2016.2523450
    ZHANG Weiwen, WEN Yonggang, GUAN K, et al. Energy-optimal mobile cloud computing under stochastic wireless channel[J]. IEEE Transactions on Wireless Communications, 2013, 12(9): 4569–4581. doi: 10.1109/TWC.2013.072513.121842
    NEELY M J. Stochastic Network Optimization with Application to Communication and Queueing Systems[M]. San Rafael, Calif.: Morgan & Claypool Publishers, 2010: 1–211.
  • 加載中
圖(6) / 表(2)
計(jì)量
  • 文章訪問(wèn)數(shù):  4020
  • HTML全文瀏覽量:  2290
  • PDF下載量:  235
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-03-21
  • 修回日期:  2019-08-20
  • 網(wǎng)絡(luò)出版日期:  2019-09-02
  • 刊出日期:  2020-03-19

目錄

    /

    返回文章
    返回