一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于深度卷積神經(jīng)網(wǎng)絡的多元醫(yī)學信號多級上下文自編碼器

袁野 賈克斌 劉鵬宇

袁野, 賈克斌, 劉鵬宇. 基于深度卷積神經(jīng)網(wǎng)絡的多元醫(yī)學信號多級上下文自編碼器[J]. 電子與信息學報, 2020, 42(2): 371-378. doi: 10.11999/JEIT190135
引用本文: 袁野, 賈克斌, 劉鵬宇. 基于深度卷積神經(jīng)網(wǎng)絡的多元醫(yī)學信號多級上下文自編碼器[J]. 電子與信息學報, 2020, 42(2): 371-378. doi: 10.11999/JEIT190135
Ye YUAN, Kebin JIA, Pengyu LIU. Multi-context Autoencoders for Multivariate Medical Signals Based on Deep Convolutional Neural Networks[J]. Journal of Electronics & Information Technology, 2020, 42(2): 371-378. doi: 10.11999/JEIT190135
Citation: Ye YUAN, Kebin JIA, Pengyu LIU. Multi-context Autoencoders for Multivariate Medical Signals Based on Deep Convolutional Neural Networks[J]. Journal of Electronics & Information Technology, 2020, 42(2): 371-378. doi: 10.11999/JEIT190135

基于深度卷積神經(jīng)網(wǎng)絡的多元醫(yī)學信號多級上下文自編碼器

doi: 10.11999/JEIT190135
基金項目: 國家自然科學基金(81871394),先進信息網(wǎng)絡北京實驗室基金(040000546618017)
詳細信息
    作者簡介:

    袁野:男,1991年生,博士生,研究方向為深度學習、健康信息學

    賈克斌:男,1962年生,教授,研究方向為多媒體信息系統(tǒng)、模式識別

    劉鵬宇:女,1979年生,副教授,研究方向為多媒體信息系統(tǒng)

    通訊作者:

    賈克斌 kebinj@bjut.edu.cn

  • 中圖分類號: TP391.4

Multi-context Autoencoders for Multivariate Medical Signals Based on Deep Convolutional Neural Networks

Funds: The National Natural Science Foundation of China (81871394), The Beijing Laboratory of Advanced Information Networks Foundation (040000546618017)
  • 摘要:

    多元醫(yī)學信號的典型代表有多模態(tài)睡眠圖和多通道腦電圖等,采用無監(jiān)督深度學習表征多元醫(yī)學信號是目前健康信息學領(lǐng)域中的一個研究熱點。為了解決現(xiàn)有模型沒有充分結(jié)合醫(yī)學信號多元時序結(jié)構(gòu)特點的問題,該文提出了一種無監(jiān)督的多級上下文深度卷積自編碼器(mCtx-CAE)。首先改進傳統(tǒng)卷積神經(jīng)網(wǎng)絡結(jié)構(gòu),提出一種多元卷積自編碼模塊,以提取信號片段內(nèi)的多元上下文特征;其次,提出采用語義學習技術(shù)對信號片段間的時序信息進行自編碼,進一步提取時序上下文特征;最后通過共享特征表示設計目標函數(shù),訓練端到端的多級上下文自編碼器。實驗結(jié)果表明,該文所提模型在兩種應用于不同醫(yī)療場景下的多模態(tài)和多通道數(shù)據(jù)集(UCD和CHB-MIT)上表現(xiàn)均優(yōu)于其它無監(jiān)督特征學習方法,能有效提高多元醫(yī)學信號的融合特征表達能力,對提高臨床時序數(shù)據(jù)的分析效率有著重要意義。

  • 圖  1  本文提出的多級上下文深度卷積自編碼器結(jié)構(gòu)圖

    圖  2  不同特征表示模型在CHB-MIT和UCD數(shù)據(jù)庫上的ROC和PR曲線

    圖  3  不同特征學習模型在CHB-MIT數(shù)據(jù)庫上對不同超參數(shù)配置的影響

    圖  4  不同特征學習模型在UCD數(shù)據(jù)庫上對不同超參數(shù)配置對的影響

    表  1  多元卷積自編碼模塊具體配置參數(shù)

    編碼單元卷積層非線性變換池化層
    元內(nèi)編碼單元$1 \times 3 \times 16$ReLU$1 \times 2$
    元間編碼單元$C \times 3 \times 8$ReLU$1 \times 2$
    解碼單元反卷積層非線性變換反池化層
    元間解碼單元$C \times 3 \times 8$ReLU$1 \times 2$
    元內(nèi)解碼單元$1 \times 3 \times 16$ReLU$1 \times 2$
    下載: 導出CSV

    表  2  CHB-MIT數(shù)據(jù)庫上的方法比較結(jié)果

    方法AUC-ROCAUC-PRF1分子準確率
    PCA0.8291 ± 0.04340.7021 ± 0.08720.6421 ± 0.02230.8768 ± 0.0223
    SAE0.5934 ± 0.03770.4180 ± 0.11890.0668 ± 0.04150.7987 ± 0.0309
    CAE0.8657 ± 0.03050.7646 ± 0.08810.6277 ± 0.12460.8690 ± 0.0267
    Med2Vec0.8155 ± 0.11810.5870 ± 0.16700.6066 ± 0.23630.8351 ± 0.0359
    Skip-gram+0.9090 ± 0.03560.7467 ± 0.15400.6288 ± 0.20400.8898 ± 0.0173
    CtxFusionEEG0.9287 ± 0.03060.7833 ± 0.11470.7202 ± 0.14850.9025 ± 0.0104
    Wave2Vec0.9035 ± 0.03710.8839 ± 0.02610.8267 ± 0.01840.9210 ± 0.0099
    m-CAE0.8946 ± 0.04010.8727 ± 0.01890.8417 ± 0.01310.9324 ± 0.0058
    mCtx-CAE0.9372 ± 0.04950.8980 ± 0.03330.8493 ± 0.01910.9412 ± 0.0110
    下載: 導出CSV

    表  3  UCD數(shù)據(jù)庫上的方法比較結(jié)果

    方法AUC-ROCAUC-PRF1分數(shù)準確率
    PCA0.8177 ± 0.01420.5764 ± 0.01720.5204 ± 0.02750.6193 ± 0.0638
    SAE0.7068 ± 0.13720.4965 ± 0.09510.2760 ± 0.18150.4917 ± 0.1364
    CAE0.8386 ± 0.03760.5710 ± 0.04290.5180 ± 0.07010.6208 ± 0.0961
    Med2Vec0.7479 ± 0.07960.4836 ± 0.10460.3997 ± 0.13610.5619 ± 0.0619
    Skip-gram+0.8010 ± 0.09920.5406 ± 0.09950.4342 ± 0.17310.5884 ± 0.1077
    CtxFusionEEG0.7941 ± 0.14850.6358 ± 0.07090.5171 ± 0.19940.6375 ± 0.1074
    Wave2Vec0.8161 ± 0.05070.5984 ± 0.06980.5268 ± 0.06610.6408 ± 0.0723
    m-CAE0.8446 ± 0.03610.5727 ± 0.02150.5600 ± 0.04820.6562 ± 0.0767
    mCtx-CAE0.8648 ± 0.02580.6423 ± 0.04520.5655 ± 0.02280.6734 ± 0.0562
    下載: 導出CSV
  • JOHNSON A E W, GHASSEMI M M, NEMATI S, et al. Machine learning and decision support in critical care[J]. Proceedings of the IEEE, 2016, 104(2): 444–466. doi: 10.1109/JPROC.2015.2501978
    RAVI D, WONG C, DELIGIANNI F, et al. Deep learning for health informatics[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21(1): 4–21. doi: 10.1109/JBHI.2016.2636665
    BOOSTANI R, KARIMZADEH F, and NAMI M. A comparative review on sleep stage classification methods in patients and healthy individuals[J]. Computer Methods and Programs in Biomedicine, 2017, 140: 77–91. doi: 10.1016/j.cmpb.2016.12.004
    YUAN Ye, XUN Guangxu, JIA Kebin, et al. A multi-view deep learning framework for EEG seizure detection[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(1): 83–94. doi: 10.1109/JBHI.2018.2871678
    ACAR E, LEVIN-SCHWARTZ Y, CALHOUN V D, et al. Tensor-based fusion of EEG and fMRI to understand neurological changes in schizophrenia[C]. 2017 IEEE International Symposium on Circuits and Systems, Baltimore, USA, 2017: 1–4.
    JIA Xiaowei, LI Kang, LI Xiaoyi, et al. A novel semi-supervised deep learning framework for affective state recognition on EEG signals[C]. 2014 IEEE International Conference on Bioinformatics and Bioengineering, Boca Raton, USA, 2014: 30–37.
    L?NGKVIST M, KARLSSON L, and LOUTFI A. A review of unsupervised feature learning and deep learning for time-series modeling[J]. Pattern Recognition Letters, 2014, 42: 11–24. doi: 10.1016/j.patrec.2014.01.008
    HOLZINGER A. Machine Learning for Health Informatics[M]. Cham: Springer, 2016: 161–182.
    SUPRATAK A, LI Ling, and GUO Yike. Feature extraction with stacked autoencoders for epileptic seizure detection[C]. The 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, USA, 2014: 4184–4187.
    YAN Bo, WANG Yong, LI Yuheng, et al. An EEG signal classification method based on sparse auto-encoders and support vector machine[C]. 2016 IEEE/CIC International Conference on Communications in China, Chengdu, China, 2016: 1–6.
    LIN Qin, YE Shuqun, HUANG Xiumei, et al. Classification of epileptic EEG signals with stacked sparse autoencoder based on deep learning[C]. The 12th International Conference on Intelligent Computing, Lanzhou, China, 2016: 802–810.
    YANG Jianli, BAI Yang, LI Guojun, et al. A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression[J]. Bio-medical Materials and Engineering, 2015, 26(S1): S1549–S1558. doi: 10.3233/BME-151454
    XUN Guangxu, JIA Xiaowei, and ZHANG Aidong. Detecting epileptic seizures with electroencephalogram via a context-learning model[J]. BMC Medical Informatics and Decision Making, 2016, 16(Suppl 2): 70. doi: 10.1186/s12911-016-0310-7
    LI Xiaoyi, JIA Xiaowei, XUN Guangxu, et al. Improving EEG feature learning via synchronized facial video[C]. 2015 IEEE International Conference on Big Data, Santa Clara, USA, 2015: 843–848.
    YUAN Ye, XUN Guangxu, SUO Qiuling, et al. Wave2Vec: Deep representation learning for clinical temporal data[J]. Neurocomputing, 2019, 324: 31–42. doi: 10.1016/j.neucom.2018.03.074
    YUAN Ye, XUN Guangxu, JIA Kebin, et al. A multi-context learning approach for EEG epileptic seizure detection[J]. BMC Systems Biology, 2018, 12(6): 47–57. doi: 10.1186/s12918-018-0626-2
    ZHANG Junming, WU Yan, BAI Jing, et al. Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers[J]. Transactions of the Institute of Measurement and Control, 2016, 38(4): 435–451. doi: 10.1177/0142331215587568
    YULITA I N, FANANY M I, and ARYMURTHY A M. Sequence-based sleep stage classification using conditional neural fields[J]. arXiv preprint arXiv:1610.01935 , 2016.
    L?NGKVIST M, KARLSSON L, and LOUTFI A. Sleep stage classification using unsupervised feature learning[J]. Advances in Artificial Neural Systems, 2012, 2012: 107046. doi: 10.1155/2012/107046
    MASCI J, MEIER U, CIRE?AN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]. The 21st International Conference on Artificial Neural Networks, Espoo, Finland, 2011: 52–59.
    HINTON G E and SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. doi: 10.1126/science.1127647
    MIKOLOV T, SUTSKEVER I, CHEN Kai, et al. Distributed representations of words and phrases and their compositionality[C]. The 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2013: 3111–3119.
    CHOI E, BAHADORI M T, SEARLES E, et al. Multi-layer representation learning for medical concepts[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 1495–1504.
    SHOEB A H. Application of machine learning to epileptic seizure onset detection and treatment[D]. [Ph.D. dissertation], Massachusetts Institute of Technology, 2009.
    GOLDBERGER A L, AMARAL L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): E215–E220. doi: 10.1161/01.CIR.101.23.e215
    FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861–874. doi: 10.1016/j.patrec.2005.10.010
    DAVIS J and GOADRICH M. The relationship between precision-recall and ROC curves[C]. The 23rd International Conference on Machine Learning, Pittsburgh, USA, 2006: 233–240.
    HE Haibo and GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263–1284. doi: 10.1109/TKDE.2008.239
    ZEILER M D. ADADELTA: An adaptive learning rate method[J]. arXiv preprint arXiv:1212.5701, 2012.
  • 加載中
圖(4) / 表(3)
計量
  • 文章訪問數(shù):  4763
  • HTML全文瀏覽量:  1558
  • PDF下載量:  153
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-03-07
  • 修回日期:  2019-08-17
  • 網(wǎng)絡出版日期:  2019-08-28
  • 刊出日期:  2020-02-19

目錄

    /

    返回文章
    返回