一種新的圖像超像素分割方法
doi: 10.11999/JEIT190111
-
1.
湖南科技大學計算機科學與工程學院 湘潭 411100
-
2.
中南大學計算機學院 長沙 410083
-
3.
中南大學自動化學院 長沙 410083
A New Method for Image Superpixel Segmentation
-
1.
School of Computer Science and Engineering, Hunan University of Science andTechnology, Xiangtan 411100, China
-
2.
School of Computer Science and Engineering, Central South University, Changsha 410083, China
-
3.
School of Automation, Central South University, Changsha 410083, China
-
摘要:
針對現(xiàn)有超像素分割方法無法自動確定合適的超像素數(shù)目,以及難以有效貼合圖像目標邊界等問題,該文提出一種新的利用局部信息進行多層級簡單線性迭代聚類的圖像超像素分割方法。首先,運用基于局部信息的簡單線性迭代聚類(LI-SLIC)對原始圖像進行超像素初分割,然后,根據(jù)超像素的色彩標準差對其進行自適應(yīng)多層級迭代分割,直至每個超像素塊的色彩標準差小于預(yù)設(shè)閾值,最后,利用相鄰超像素間的色彩差異對過分割的超像素進行合并。為驗證方法的有效性,該文采用Berkeley, Pascal VOC和3Dircadb公共數(shù)據(jù)庫作為實驗數(shù)據(jù)集,并與其他多種超像素分割方法進行了比較。實驗結(jié)果表明,該文提出的超像素分割方法能更精確貼合圖像目標邊界,有效抑制圖像過分割和欠分割。
-
關(guān)鍵詞:
- 圖像處理 /
- 超像素 /
- 局部信息簡單線性迭代聚類 /
- 多層級迭代分割 /
- 超像素合并
Abstract:Considering the problem that the existing superpixel methods are usually unable to set an appropriate number of generated superpixels automatically and unable to adhere to image boundaries effectively, a new superpixel method is proposed in this paper, which utilizes local information to perform multi-level simple linear iterative clustering to generate superpixels. First, original image is initially segmented by Simple Liner Iterative Clustering based on Local Information (LI-SLIC). Then, each superpixel is segmented iteratively until its color standard deviation is lower than a predefined threshold. Finally, the over-segmented superpixels are merged based on the color differences between adjacent superpixels. Experiments on Berkeley, Pascal VOC and 3Dircadb databases, as well as comparison with other methods indicate that the proposed method can adhere to image boundaries more accurately, and can prevent over- and under- segmentations more effectively.
-
WANG Murong, LIU Xiabi, GAO Yixuan, et al. Superpixel segmentation: A benchmark[J]. Signal Processing: Image Communication, 2017, 56: 28–39. doi: 10.1016/j.image.2017.04.007 ZHOU Xianen, WANG Yaonan, ZHU Qing, et al. SSG: Superpixel segmentation and GrabCut-based salient object segmentation[J]. The Visual Computer, 2019, 35(3): 385–398. doi: 10.1007/s00371-018-1471-4 SHAO Hong, YU Tianshu, XU Mengjia, et al. Image region duplication detection based on circular window expansion and phase correlation[J]. Forensic Science International, 2012, 222(1/3): 71–82. TIAN Zhiqiang, LIU Lizhi, ZHANG Zhenfeng, et al. Superpixel-based segmentation for 3D prostate MR images[J]. IEEE Transactions on Medical Imaging, 2016, 35(3): 791–801. doi: 10.1109/TMI.2015.2496296 WANG Jun, LIU Weibin, XING Weiwei, et al. Visual object tracking with multi-scale superpixels and color-feature guided kernelized correlation filters[J]. Signal Processing: Image Communication, 2018, 63: 44–62. doi: 10.1016/j.image.2018.01.005 LI Zhengqin and CHEN Jiansheng. Superpixel segmentation using linear spectral clustering[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1356–1363. SHI Jianbo and MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888–905. doi: 10.1109/34.868688 GIRAUD R, TA V T, and PAPADAKIS N. Robust superpixels using color and contour features along linear path[J]. Computer Vision and Image Understanding, 2018, 170: 1–13. doi: 10.1016/j.cviu.2018.01.006 ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2281. doi: 10.1109/TPAMI.2012.120 ACHANTA R and SüSSTRUNK S. Superpixels and polygons using simple non-iterative clustering[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4895–4904. VASQUEZ D and SCHARCANSKI J. An iterative approach for obtaining multi-scale superpixels based on stochastic graph contraction operations[J]. Expert Systems with Applications, 2018, 102: 57–69. doi: 10.1016/j.eswa.2018.02.027 CONZE P H, NOBLET V, ROUSSEAU F, et al. Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(2): 223–233. doi: 10.1007/s11548-016-1493-1 MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. IEEE International Conference on Computer Vision, Vancouver, Canada, 2001: 416–423. EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The PASCAL visual object classes challenge: A retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98–136. doi: 10.1007/s11263-014-0733-5 SOLER L, HOSTETTLER A, AGNUS V, et al. 3D image reconstruction for comparison of algorithm database: A patient-specific anatomical and medical image database[EB/OL]. http://www-sop.inria.fr/geometrica/events/wam/abstract-ircad.pdf. -