基于集成固有時間尺度分解的IFF輻射源個體識別算法
doi: 10.11999/JEIT190085
-
國防科技大學電子對抗學院 合肥 230037
Individual Recognition Algorithm of IFF Radiation Sources Based on Ensemble Intrinsic Time-scale Decomposition
-
College of Electronic Countermeasures, National University of Defense Technology, Hefei 230037, China
-
摘要:
為研究敵我識別(IFF)輻射源信號的細微特征,針對目前在復(fù)雜噪聲環(huán)境中IFF輻射源個體識別研究不足的問題,該文提出一種基于集成固有時間尺度分解的IFF輻射源個體識別算法。該算法應(yīng)用集成固有時間尺度分解(EITD)將采樣信號自適應(yīng)劃分為若干有實際意義的信號分量并求取IFF輻射源信號在時頻域的能量分布圖。通過對時頻能量譜的紋理分析,以圖像的紋理特征表征輻射源信號的無意調(diào)制特征,送入支持向量機(SVM)中進行分類識別。實驗表明,所提算法相較于基于希爾伯特-黃變換(HHT)、基于固有時間尺度分解(ITD)的輻射源個體識別方法在識別準確度上有較大提升。
Abstract:In order to study the subtle feature recognition of Identification Foe or Friend (IFF) radiation source signals, this paper proposes an IFF individual recognition method based on ensemble intrinsic time-scale decomposition to solve the problem of insufficient research on individual identification of IFF radiation source in complex noise environment. In this algorithm, the Ensemble Intrinsic Time-scale Decomposition (EITD) is applied to dividing the sampled signals into several practical signal components and obtaining the energy distribution diagram of the IFF radiation source signals in time-frequency domain. Through the texture analysis of time-frequency energy spectrum, the unintentional modulation feature of the radiation source signals is represented by the texture features of the image, which are sent to the Support Vector Machine (SVM) for classification and recognition. Experiments show that the proposed method is more accurate than the Hilbert-Huang Transform (HHT) and Inherent Time scale Decomposition (ITD) based method.
-
譚源泉, 李勝強, 王厚軍. 西方體制Mark XIIA的Mode5數(shù)據(jù)格式分析[J]. 電子科技大學學報, 2011, 40(4): 532–536. doi: 10.3969/j.issn.1001-0548.2011.04.011TAN Yuanquan, LI Shengqiang, and WANG Houjun. Analysis on data format of Mode 5 in western Mark XIIA[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(4): 532–536. doi: 10.3969/j.issn.1001-0548.2011.04.011 LIU Mingwei and DOHERTY J F. Nonlinearity estimation for specific emitter identification in multipath channels[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1076–1085. doi: 10.1109/TIFS.2011.2134848 龍慧敏. 基于時域調(diào)制域特征的 IFF 模式5信號識別[J]. 電訊技術(shù), 2014, 54(7): 910–914. doi: 10.3969/j.issn.1001-893x.2014.07.009LONG Huimin. Identification of IFF Mode 5 signals based on time & modulation domain characteristics[J]. Telecommunication Engineering, 2014, 54(7): 910–914. doi: 10.3969/j.issn.1001-893x.2014.07.009 李維科. 基于時域和編碼特征的Mark XIIA IFF信號識別方法[J]. 兵器裝備工程學報, 2016, 37(7): 153–157. doi: 10.11809/scbgxb2016.07.033LI Weike. Identification of Mark XIIA IFF signals based on time domain and coding characteristics[J]. Journal of Ordnance Equipment Engineering, 2016, 37(7): 153–157. doi: 10.11809/scbgxb2016.07.033 許程成, 周青松, 張劍云, 等. 導數(shù)約束平滑條件下基于模糊函數(shù)特征的雷達輻射源信號識別方法[J]. 電子學報, 2018, 46(7): 1663–1668. doi: 10.3969/j.issn.0372-2112.2018.07.018XU Chengcheng, ZHOU Qingsong, ZHANG Jianyun, et al. Radar emitter recognition based on ambiguity function features with derivative constraint on smoothing[J]. Acta Electronica Sinica, 2018, 46(7): 1663–1668. doi: 10.3969/j.issn.0372-2112.2018.07.018 WANG Xuebao, HUANG Gaoming, ZHOU Zhiwen, et al. Radar emitter recognition based on the energy cumulant of short time fourier transform and reinforced deep belief network[J]. Sensors, 2018, 18(9): 3103. doi: 10.3390/s18093103 LIU Shaokun, YAN Xiaopeng, LI Ping, et al. Radar emitter recognition based on SIFT position and scale features[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(12): 2062–2066. doi: 10.1109/TCSII.2018.2819666 趙越, 陳之純, 糾博, 等. 一種基于時頻分析的窄帶雷達飛機目標分類特征提取方法[J]. 電子與信息學報, 2017, 39(9): 2225–2231. doi: 10.11999/JEIT161204ZHAO Yue, CHEN Zhichun, JIU Bo, et al. Narrowband aircraft targets feature extraction and classification based on time-frequency analysis[J]. Journal of Electronics &Information Technology, 2017, 39(9): 2225–2231. doi: 10.11999/JEIT161204 張?zhí)祢U, 全盛榮, 強幸子, 等. 基于多尺度Chirplet稀疏分解和Wigner-Ville變換的時頻分析方法[J]. 電子與信息學報, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750ZHANG Tianqi, QUAN Shengrong, QIANG Xingzi, et al. Time-frequency analysis method based on multi-scale Chirplet sparse decomposition and Wigner-Ville transform[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750 任東方, 張濤, 韓潔, 等. 基于ITD與紋理分析的特定輻射源識別方法[J]. 通信學報, 2017, 38(12): 160–168. doi: 10.11959/j.issn.1000-436x.2017299REN Dongfang, ZHANG Tao, HAN Jie, et al. Specific emitter identification based on ITD and texture analysis[J]. Journal on Communications, 2017, 38(12): 160–168. doi: 10.11959/j.issn.1000-436x.2017299 ZHANG Jingwen, WANG Fanggang, DOBRE O A, et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192–1205. doi: 10.1109/tifs.2016.2520908 WU Zhaohua and HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1–41. doi: 10.1142/S1793536909000047 FREI M G and OSORIO I. Intrinsic time-scale decomposition: Time-frequency-energy analysis and real-time filtering of non-stationary signals[J]. The Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463(2078): 321–342. doi: 10.1098/rspa.2006.1761 HU Aijun, YAN Xiaoan, and XIANG Ling. A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension[J]. Renewable Energy, 2015, 83: 767–778. doi: 10.1016/j.renene.2015.04.063 HU Aijun, XIANG Ling, and GAO Nan. Fault diagnosis for the gearbox of wind turbine combining ensemble intrinsic time-scale decomposition with Wigner bi-spectrum entropy[J]. Journal of Vibroengineering, 2017, 19(3): 1759–1770. doi: 10.21595/jve.2017.17465 叢蕊, 高光甫, 樊瑞筱, 等. 基于灰度-梯度共生矩陣和模糊核聚類的振動圖形識別方法[J]. 振動與沖擊, 2012, 32(21): 73–76. doi: 10.3969/j.issn.1000-3835.2012.21.015CONG Rui, GAO Guangfu, FAN Ruixiao, et al. Vibration image recognition method based on gray-gradient CO-occurrence matrix and kernel·-based fuzzy clustering[J]. Journal of Vibration and Shock, 2012, 32(21): 73–76. doi: 10.3969/j.issn.1000-3835.2012.21.015 -