多信源多中繼編碼協(xié)作系統(tǒng)準循環(huán)LDPC碼的聯(lián)合設(shè)計與性能分析
doi: 10.11999/JEIT190069
-
南京郵電大學(xué)通信與信息工程學(xué)院 ??南京 ??210003
Joint Design of Quasi-cyclic Low Density Parity Check Codes and Performance Analysis of Multi-source Multi-relay Coded Cooperative System
-
College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
-
摘要: 為解決多信源多中繼低密度奇偶校驗(LDPC)碼編碼協(xié)作系統(tǒng)編碼復(fù)雜度高、編碼時延長的問題,該文引入一種特殊結(jié)構(gòu)的LDPC碼—基于生成矩陣的準循環(huán)LDPC碼(QC-LDPC)碼。該類碼結(jié)合了QC-LDPC碼與基于生成矩陣LDPC (G-LDPC)碼的特點,可直接實現(xiàn)完全并行編碼,極大地降低了中繼節(jié)點的編碼時延及編碼復(fù)雜度。在此基礎(chǔ)上,推導(dǎo)出對應(yīng)于信源節(jié)點和中繼節(jié)點采用的QC-LDPC碼的聯(lián)合校驗矩陣,并基于最大公約數(shù)(GCD)定理聯(lián)合設(shè)計該矩陣以消除其所有圍長為4, 6(girth-4, girth-6)的短環(huán)。理論分析和仿真結(jié)果表明,在同等條件下該系統(tǒng)的誤碼率(BER)性能優(yōu)于相應(yīng)的點對點系統(tǒng)。仿真結(jié)果還表明,與采用顯式算法構(gòu)造QC-LDPC碼或一般構(gòu)造QC-LDPC碼的協(xié)作系統(tǒng)相比,采用聯(lián)合設(shè)計QC-LDPC碼的系統(tǒng)均可獲得更高的編碼增益。
-
關(guān)鍵詞:
- 準循環(huán)低密度奇偶校驗碼 /
- 編碼協(xié)作 /
- 聯(lián)合校驗矩陣 /
- 最大公約數(shù)定理
Abstract: To solve the problems of high encoding complexity and long encoding delay in the multi-source multi-relay Low Density Parity Check (LDPC) coded cooperative system, a special kind of structured LDPC codes—Quasi-Cyclic LDPC (QC-LDPC) codes based on generator matrix is proposed, which combines the characteristics of QC-LDPC codes and Generator-matrix-based LDPC (G-LDPC) codes. It can perform completely parallel encoding, which greatly reduces the encoding complexity and delay at the relays. Based on this, a joint parity check matrix corresponding to the QC-LDPC codes adopted by the sources and relays is deduced, and the matrix is further jointly designed based on the Greatest Common Divisor (GCD) theorem to eliminate all cycles of girth-4 and girth-6. Theoretical analysis and simulation results show that under the same conditions, the Bit Error Rate (BER) performance of the proposed system is better than that of the corresponding point-to-point system. The simulation results also show that the cooperative system with jointly designed QC-LDPC codes can obtain a higher coding gain than the system with explicitly constructed QC-LDPC codes or generally constructed QC-LDPC codes. -
表 1 雙信源雙中繼編碼協(xié)作及對應(yīng)點對點系統(tǒng)所采用的QC-LDPC碼
信源節(jié)點所采用的QC-LDPC碼 中繼節(jié)點所采用的QC-LDPC碼 雙信源雙中繼系統(tǒng) $ {{\text{H}}_{{S_{1}}}} = {{\text{H}}_{1(1100 \times 2200)}} $ $ {{\text{H}}_{{R_{1}}}} = [ {{{\text{A}}_{1(1100 \times 2200)}}}\quad {{{\text{B}}_{1(1100 \times 2200)}}}\quad {\text{I}}_{(1100 \times 1100)}]$ ${{\text{H}}_{{S_{2}}}} = {{\text{H}}_{2(1100 \times 2200)}}$ $ {{\text{H}}_{{R_{2}}}} = [ {{{\text{A}}_{2(1100 \times 2200)}}}\quad {{{\text{B}}_{2(1100 \times 2200)}}}\quad {\text{I}}_{(1100 \times 1100)}] $ Rate=1/2 Rate=4/5 點對點系統(tǒng) ${{\text{H}}_S} = {{\text{H}}_{(2200 \times 6600)}}$
Rate=1/3\ 下載: 導(dǎo)出CSV
表 2 不同信源節(jié)點、中繼節(jié)點數(shù)目情況下編碼協(xié)作系統(tǒng)所采用的QC-LDPC碼
信源節(jié)點所采用的QC-LDPC碼 中繼節(jié)點所采用的QC-LDPC碼 雙信源雙中繼 $ {{\text{H}}_{{S_{1}}}} = {{\text{H}}_{1(1100 \times 2200)}} $ $ { {\text{H} }_{ {R_{1} } } } = [\begin{array}{*{20}{c} } { { {\text{A} }_{1(1100 \times 2200)} } } & { { {\text{B} }_{1(1100 \times 2200)} } } & {\text{I} }_{(1100 \times 1100)} \end{array}] $ $ {{\text{H}}_{{S_{2}}}} = {{\text{H}}_{2(1100 \times 2200)}} $ $ { {\text{H} }_{ {R_{2} } } } = [\begin{array}{*{20}{c} } { { {\text{A} }_{2(1100 \times 2200)} } } & { { {\text{B} }_{2(1100 \times 2200)} } } & {\text{I}_{(1100 \times 1100)} } \end{array} ]$ Rate=1/2 Rate=4/5 雙信源單中繼 $ {{\text{H}}_{{S_{1}}}} = {{\text{H}}_{1(1100 \times 2200)}} $ ${ {\text{H} }_R} = [\begin{array}{*{20}{c} } { { {\text{A} }_{(1100 \times 2200)} } } & { { {\text{B} }_{(1100 \times 2200)} } } & {{\text{I}}_{(1100 \times 1100)} } \end{array} ]$ $ {{\text{H}}_{{S_{2}}}} = {{\text{H}}_{2(1100 \times 2200)}} $ Rate=1/2 Rate=4/5 單信源雙中繼 ${{\text{H}}_S} = {{\text{H}}_{1(1100 \times 2200)}}$ $\begin{gathered} {{\text{H}}_{{R_{1}}}} = [\begin{array}{*{20}{c}} {{{\text{A}}_{1(1100 \times 2200)}}}&{{{\text{I}}_{(1100 \times 1100)}}} \end{array}] \\ {{\text{H}}_{{R_{2}}}} = [\begin{array}{*{20}{c}} {{{\text{A}}_{2(1100 \times 2200)}}}&{{{\text{I}}_{(1100 \times 1100)}}} \end{array}] \\ \end{gathered} $ Rate=1/2 Rate=2/3 下載: 導(dǎo)出CSV
表 3 采用一般構(gòu)造QC-LDPC碼的協(xié)作系統(tǒng)各節(jié)點所采用的碼字
信源節(jié)點所采用的QC-LDPC碼 中繼節(jié)點所采用的QC-LDPC碼 雙信源雙中繼 ${d_{\rm v}} = 2$, ${d_{\rm c}} = 4$
B=550${d_{\rm v}} = 2$, ${d_{\rm c}} = 10$
B=550注:dv指每列“1”的個數(shù),dc指每行“1”的個數(shù) 下載: 導(dǎo)出CSV
表 4 采用顯式構(gòu)造QC-LDPC碼的協(xié)作系統(tǒng)所采用的碼字
信源節(jié)點所采用的QC-LDPC碼 中繼節(jié)點所采用的QC-LDPC碼 雙信源雙中繼 ${d_{\rm v}} = 2$, ${d_{\rm c}} = 3$
B=730${d_{\rm v}} = 2$, ${d_{\rm c}} = 8$
B=730下載: 導(dǎo)出CSV
-
RYAN W E and LIN Shu. Channel Codes: Classical and Modern[M]. Cambridge: Cambridge University Press, 2009: 201–254. DEHGHAN A and BANIHASHEMI A H. On the tanner graph cycle distribution of random LDPC, random protograph-based LDPC, and random quasi-cyclic LDPC code ensembles[J]. IEEE Transactions on Information Theory, 2018, 64(6): 4438–4451. doi: 10.1109/TIT.2018.2805906 賀文武, 夏巧橋, 鄒煉. 基于變量節(jié)點更新的交替方向乘子法LDPC懲罰譯碼算法[J]. 電子與信息學(xué)報, 2018, 40(1): 95–101. doi: 10.11999/JEIT170358HE Wenwu, XIA Qiaoqiao, and ZOU Lian. Alternating direction method of multipliers LDPC penalized decoding algorithm based on variable node update[J]. Journal of Electronics &Information Technology, 2018, 40(1): 95–101. doi: 10.11999/JEIT170358 LIU Yuanhua, NIU Xinliang, WANG Xinmei, et al. Design of quasi-cyclic LDPC codes based on Euclidean geometries[J]. Journal of Electronics(China) , 2010, 27(3): 340–344. doi: 10.1007/s11767-010-0348-0 KARIMI M and BANIHASHEMI A H. Counting short cycles of quasi cyclic protograph LDPC codes[J]. IEEE Communications Letters, 2012, 16(3): 400–403. doi: 10.1109/lcomm.2012.020212.112311 JIANG Xueqin and LEE M H. Large girth quasi-cyclic LDPC codes based on the Chinese remainder theorem[J]. IEEE Communications Letters, 2009, 13(5): 342–344. doi: 10.1109/lcomm.2009.082115 袁建國, 梁夢琪, 尚曉娟. 基于Fibonacci數(shù)列對QC-LDPC碼的一種新穎構(gòu)造方法[J]. 激光雜志, 2016, 37(6): 37–40. doi: 10.14016/j.cnki.jgzz.2016.06.037YUAN Jianguo, LIANG Mengqi, and SHANG Xiaojuan. A novel construction method of QC-LDPC codes based on Fibonacci sequence[J]. Laser Journal, 2016, 37(6): 37–40. doi: 10.14016/j.cnki.jgzz.2016.06.037 ESMAEILI M and GHOLAMI M. Maximum-girth slope-based quasi-cyclic (2, k≥5) low-density parity-check codes[J]. IET Communications, 2008, 2(10): 1251–1262. doi: 10.1049/iet-com:20080013 VAN NGUYEN B, JUNG H, and KIM K. Physical layer security schemes for full-duplex cooperative systems: State of the art and beyond[J]. IEEE Communications Magazine, 2018, 56(11): 131–137. doi: 10.1109/MCOM.2017.1700588 BANNOUR A, SACCHI C, and SUN Yichuang. MIMO-OFDM based energy harvesting cooperative communications using coalitional game algorithm[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 11166–11179. doi: 10.1109/TVT.2017.2768622 WANG Jieling, YU Quan, LI Zan, et al. Distributed space time block transmission and QRD based diversity detector in asynchronous cooperative communications systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5111–5125. doi: 10.1109/TVT.2018.2812901 ZHANG Shunwai, YANG Fengfan, and SONG Rongfang. Energy-harvesting-based RA-coded cooperative MIMO: Codes design and performance analysis[J]. Digital Signal Processing, 2017, 60(2): 56–62. doi: 10.1016/j.dsp.2016.08.013 MUGHAL S, YANG Fengfan, and UMAR R. Reed-Muller network coded-cooperation with joint decoding[J]. IEEE Communications Letters, 2019, 23(1): 24–27. doi: 10.1109/LCOMM.2018.2879101 陳紫強, 歐陽繕, 肖海林. 解碼前傳半雙工中繼信道下協(xié)作LDPC 碼設(shè)計[J]. 電子與信息學(xué)報, 2011, 33(11): 2610–2615. doi: 10.3724/SP.J.1146.2011.00323CHEN Ziqiang, OUYANG Shan, and XIAO Hailin. Cooperative LDPC codes design for decode-and-forward half-duplex relay channels[J]. Journal of Electronics &Information Technology, 2011, 33(11): 2610–2615. doi: 10.3724/SP.J.1146.2011.00323 JANANI M, HEDAYAT A, HUNTER T E, et al. Coded cooperation in wireless communications: Space-time transmission and iterative decoding[J]. IEEE Transactions on Signal Processing, 2004, 52(2): 362–371. doi: 10.1109/TSP.2003.821100 LI Zongyan, PENG Mugen, WU Zhanji, et al. Network coding scheme based on LDPC product codes in multiple-access relay system[C]. 2011 IEEE International Conference on Communications Workshops, Kyoto, Japan, 2011: 1–4. ZHANG Shunwai, YANG Fengfan, TANG Lei, et al. Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding[J]. International Journal of Electronics, 2016, 103(3): 384–405. doi: 10.1080/00207217.2015.1036374 DU Bing and ZHANG Jun. Parity check network coding for wireless cooperative communications[J]. Chinese Journal of Electronics, 2010, 19(2): 339–344. 張順外. LDPC編碼協(xié)作系統(tǒng)性能與碼的設(shè)計研究[D]. [博士論文], 南京航空航天大學(xué), 2013.ZHANG Shunwai. LDPC-coded cooperation: Performance studies and codes design[D]. [Ph.D. dissertation], Nanjing University of Aeronautics and Astronautics, 2013. ZHANG Shunwai, YANG Fengfan, and TANG Lei. Network-coding-based multisource multirelay LDPC-coded cooperative MIMO[J]. Transactions on Emerging Telecommunications Technologies, 2015, 26(3): 491–502. doi: 10.1002/ett.2659 ZHANG Guohua, SUN Rong, and WANG Xinmei. Construction of girth-eight QC-LDPC codes from greatest common divisor[J]. IEEE Communications Letters, 2013, 17(2): 369–372. doi: 10.1109/LCOMM.2012.122012.122292 ZHANG Jianhua and ZHANG Guohua. Deterministic girth-eight QC-LDPC codes with large column weight[J]. IEEE Communications Letters, 2014, 18(4): 656–659. doi: 10.1109/lcomm.2014.030114.132853 張國華, 陳超, 楊洋, 等. Girth-8 (3,L)-規(guī)則QC-LDPC碼的一種確定性構(gòu)造方法[J]. 電子與信息學(xué)報, 2010, 32(5): 1152–1156. doi: 10.3724/SP.J.1146.2009.00838ZHANG Guohua, CHEN Chao, YANG Yang, et al. Girth-8 (3,L)-regular QC-LDPC codes based on novel deterministic design technique[J]. Journal of Electronics &Information Technology, 2010, 32(5): 1152–1156. doi: 10.3724/SP.J.1146.2009.00838 -