一種方向插值預(yù)測變長編碼的幀存有損壓縮算法
doi: 10.11999/JEIT181195
-
1.
陜西中醫(yī)藥大學(xué)基礎(chǔ)醫(yī)學(xué)院 ??西安 ??712046
-
2.
新加坡國立大學(xué)科學(xué)信息系統(tǒng)學(xué)院 ??新加坡 ??119077
A Lossy Frame Memory Compression Algorithm Using Directional Interpolation Prediction Variable Length Coding
-
1.
Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xi’an 712046, China
-
2.
Institute.of Systems, National University of Singapore, 119077, Singapore
-
摘要: 為了提高幀存儲的壓縮性能,該文提出一種基于方向插值預(yù)測變長編碼(DIPVLC)的幀存有損壓縮算法。首先根據(jù)自適應(yīng)紋理方向插值獲取參考像素,從而得到預(yù)測殘差,然后優(yōu)化率失真模型對預(yù)測殘差進(jìn)行量化,最后通過游程哥倫布算法對量化殘差進(jìn)行變長編碼。實驗結(jié)果顯示,與內(nèi)容感知自適應(yīng)量化(CAAQ)的幀存壓縮算法相比,該文算法不但PSNR下降更少,而且壓縮率提高了10.05%,同時編碼時間減少了10.62%。Abstract: A lossy frame memory compression algorithm using Direction Interpolation Prediction Variable Length Coding (DIPVLC) is proposed to improve frame memory compression performance. Firstly, the prediction residual is obtained by adaptive texture directional interpolation. Then, a new rate-distortion is optimized to quantize prediction residual. Finally, the run length Golomb method is used to entropy coding for quantized residual. Simulation results show that compared with parallel Content Aware Adaptive Quantization (CAAQ) oriented lossy frame memory recompression for HEVC, the proposed algorithm improves the compression rate by 10.05% and reduces the encoding time by 10.62% with less PSNR reduction.
-
Key words:
- Lossy compression /
- Compression ratio /
- Frame memory /
- Encoding time
-
表 1 哥倫布商碼表
QR k=0 k=1 k=2 k=3 0 0 00 000 0000 ±1 10 01 001 0001 ±2 110 100 010 0010 ±3 1110 101 011 0100 ±4 111100 1100 1000 0101 ±5 111101 1101 1001 0110 $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ 下載: 導(dǎo)出CSV
表 2 哥倫布商碼表
QR k=0 k=1 k=2 k=3 0 0 00 000 0000 ±1 10 01 001 0001 ±2 110 100 010 0010 ±3 1110 101 011 0011 ±4 1111* 1100 1000 0100 ±5 1101* 1001 0110 ±6 1010 ±7 1011* $ \vdots $ $ \vdots $ $ \vdots $ ±15 1111* 下載: 導(dǎo)出CSV
表 3 本文算法模塊性能提升對比
序列 CR(%) ${\rm{\Delta }} {\rm{PSNR(dB)}}$ RET 模塊/CAAQ(%) CAAQ 預(yù)測 率失真 編碼 CAAQ 預(yù)測 率失真 編碼 預(yù)測 率失真 編碼 bluesky 80.26 83.69 85.64 86.25 –0.05 –0.05 –0.04 –0.04 99.56 98.15 85.34 traffic 70.95 73.11 77.64 76.61 –0.07 –0.06 –0.03 –0.05 99.12 100.54 90.12 riverbed 60.21 61.21 67.21 65.21 –0.09 –0.09 –0.04 –0.05 98.89 101.51 95.14 平均 70.47 72.67 76.83 76.02 –0.07 –0.07 –0.04 –0.05 99.19 100.07 90.20 下載: 導(dǎo)出CSV
表 4 本文算法與CAAQ算法壓縮的性能對比
序列 CR(%) ${\rm{\Delta }} {\rm{PSNR(dB)}}$ RET CAAQ 本文算法 CAAQ 本文算法 本文/CAAQ(%) Tennis 78.21 93.23 –0.02 –70.01 86.00 bluesky 80.26 91.45 –0.05 –0.03 85.21 Johnny 81.39 93.56 –0.05 –0.02 84.25 crowdrun 71.21 79.56 –0.06 –0.01 89.15 traffic 70.95 82.10 –0.07 –0.02 89.25 stockholm 70.12 79.12 –0.08 –0.03 88.56 racehorses 64.36 73.14 –0.06 –0.01 92.31 riverbed 60.21 68.52 –0.09 –0.02 96.14 mobcal 59.76 67.14 –0.08 –0.03 93.54 平均 70.72 80.87 –0.06 –0.02 89.38 下載: 導(dǎo)出CSV
-
ITU-T Study Group 16. Recommendation ITU-T h.265 High efficiency video coding[S]. Geneva: ITU, 2014. FAN Yibo, SHANG Qing, and ZENG Xiaoyang. In-block prediction-based mixed lossy and lossless reference frame recompression for next-generation video encoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(1): 112–124. doi: 10.1109/TCSVT.2014.2329353 LI Weigang. Optimize genomics data compression with hardware accelerator[C]. 2017 Data Compression Conference (DCC), Snowbird, USA, 2017: 446. GUPTE A D, AMRUTUR B, MEHENDALE M M, et al. Memory bandwidth and power reduction using lossy reference frame compression in video encoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(2): 225–230. doi: 10.1109/TCSVT.2011.2105599 QIAN Dong and LI Bing. A lossless compression method for RTK in hardware compressors[C]. 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC), Taiwan, China, 2017: 1–2. MA Yanzhuo and KANG Lijuan. Adaptive granularity selection in reference picture memory compression[C]. The 2015 International Conference on Mechatronics, Electronic, Industrial and Control Engineering, Kuala Lumpur, Malaysia, 2015: 1158–1161. LEE Y, RHEE C E, LEE H J. A new frame recompression algorithm integrated with h.264 video compression[C]. 2007 IEEE International Symposium on Circuits and Systems, New Orleans, USA, 2007: 1621–1624. SAMPAIO F, ZATT B, SHAFIQUE M, et al. Content-adaptive reference frame compression based on intra-frame prediction for multiview video coding[C]. 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 2013: 1831–1835. BAGA Y, GHAFFARI F, DECLERCQ D, et al. Reduction of frames storage size in AFDX reception end-system using a lossless compression algorithm[C]. The 36th IEEE/AIAA Digital Avionics Systems Conference (DASC), Saint Petersburg, USA, 2017: 1–8. WILLèME A, MACQ B, DESCAMPE A, et al. JPEG XS-based frame buffer compression inside HEVC for power-aware video compression[C]. 2018 IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018: 3598–3602. ZHOU Xin, LIAN Xiaocong, ZHOU Wei, et al. A low power lossy frame memory recompression algorithm[C]. 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Jeju, South Korea, 2016: 1–4. CHEN Qiubo, SUN Hongbin, and ZHENG Nanning. Worst case driven display frame compression for energy-efficient ultra-HD display processing[J]. IEEE Transactions on Multimedia, 2018, 20(5): 1113–1125. doi: 10.1109/tmm.2017.2762004 LIAN Xiaocong, LIU Zhenyu, ZHOU Wei, et al. Parallel content-aware adaptive quantization-oriented lossy frame memory recompression for HEVC[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(4): 958–971. doi: 10.1109/TCSVT.2016.2638857 WIEGAND T and GIROD B. Lagrange multiplier selection in hybrid video coder control[C]. 2001 International Conference on Image Processing, Thessaloniki, Greece, 2001: 542–545. ZHANG Fan and BULL D R. Rate-distortion optimization using adaptive lagrange multipliers[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 20(3): 150–153. doi: 10.1109/TCSVT.2018.2873837 International Telecommunication Union. HM16.8[EB/OL]. https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftwar.2018.12.1. -