基于無色無向無沖突可重構光分插復用器節(jié)點的全光IP組播能效調度
doi: 10.11999/JEIT180937
-
1.
重慶郵電大學通信與信息工程學院 ??重慶 ??400065
-
2.
重慶郵電大學工業(yè)物聯(lián)網(wǎng)與網(wǎng)絡化控制教育部重點實驗室 ??重慶 ??400065
-
3.
國網(wǎng)冀北電力有限公司信息通信分公司 ??北京 ??100053
Energy-efficient Scheduling Algorithm for All Optical IP Multicast Based on Colorless, Directionless and Contentionless-Flexible Reconfigurable Optical Add/Drop Multiplexer Node
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
3.
Information & Telecommunication Company, State Grid Jibei Electric Power Co., Ltd., Beijing 100053, China
-
摘要: 為了提高無色無向無沖突靈活的可重構光分插復用器(CDC-F ROADM)節(jié)點的彈性光網(wǎng)絡IP組播頻譜-能耗效率,該文提出一種全光組播能效調度算法(AMEESA)。在算法路由階段,考慮能耗和鏈路頻譜資源使用情況設計鏈路代價函數(shù),構建最小代價光樹算法組播光樹。在頻譜分配階段,設計基于高效光譜分辨率(HSR)光樹中間節(jié)點頻譜轉換方法,選擇節(jié)能頻譜轉換方案為組播光樹分配頻譜塊資源。仿真分析表明,所提算法能有效提升網(wǎng)絡能效,降低IP組播帶寬阻塞率。
-
關鍵詞:
- 光組播 /
- 無色無向無沖突靈活的可重構光分插復用器 /
- 能效調度 /
- 能耗 /
- 帶寬阻塞率
Abstract: In order to improve multicast’s spectrum energy-efficient of elastic optical network configured with Colorless, Directionless and Contentionless-Flexible Reconfigurable Optical Add/Drop Multiplexer (CDC-F ROADM) nodes, an All-optical Multicast Energy Efficiency Scheduling Algorithm (AMEESA) is proposed. In the routing phase, considering both energy consumption and link spectrum resource utilization, the link cost function is designed to establish the multicast tree with the least cost. In the spectrum allocation phase, a spectrum conversion method based on High Spectral Resolution (HSR) is designed by changing the spectrum slot index of adjacent links according to links availability of spectrum blocks. And an energy-saving spectrum conversion scheme is selected to allocate spectrum block resources for the multicast tree. Simulation analysis shows that the proposed algorithm can effectively improve the network energy efficiency and reduce the bandwidth blocking probability of IP multicast. -
表 1 不同調制格式下單頻隙的傳輸速率、能耗和最大距離
調制格式 傳輸速率(Gb/s) 能耗(W) 最大距離(km) BPSK 12.5 112.374 4000 QPSK 25.0 133.416 2000 8QAM 37.5 154.457 1000 16QAM 50.0 175.498 500 32QAM 62.5 196.539 250 下載: 導出CSV
表 2 AMEESA算法
輸入:光網(wǎng)絡拓撲$G\left( {{\text{V}}, {\text{E}}, {\text{S}}} \right)$,節(jié)點集${\text{V}} = \left\{ {{v_i}|i = 1, 2, ·\!·\!· , \left| {\text{V}} \right|} \right\}$,節(jié)點端口數(shù)N,鏈路集${\text{E}} = \left\{ {{e_{ij}}|i, j \in {\text{V}}, i \ne j} \right\}$,鏈路頻隙集${\text{S}} = \left\{ {{s_i}|i =}\right.$ $\left.{ 1, 2, ·\!·\!· , |{\text{S}}|} \right\}$,組播集${\text{R}} = \left\{ {{R_k}|k = 1, 2, ·\!·\!· , \left| {\text{R}} \right|} \right\}$,其中組播請求Rk=(sk, Dk, wk), sk為第k個業(yè)務源節(jié)點,Dk為第k個業(yè)務目的節(jié)點集 合,wk代表第k個業(yè)務所需頻譜帶寬,設變量k=1; 輸出:各組播的傳輸光樹和路徑上頻隙索引值起止編號,網(wǎng)絡能耗PT; (1) 判斷集合R是否空?如果是,則轉到步驟(12),如果不是,處理第k個組播請求Rk=(sk, Dk, wk); (2) 初始化組播Rk光樹集合Tk=$\varnothing $,使用式(8)更新網(wǎng)絡拓撲中每條鏈路的代價; (3) 在Dk中任取一個目的節(jié)點dj,使用Dijkstra算法為組播計算一條從源節(jié)點sk到dj的最小代價路徑Pk, j;并將Pk, j加入組播光樹Tk中,更新 業(yè)務Rk目的節(jié)點集合Dk=Dk–dj; (4) 判斷目的節(jié)點集合Dk是否為$\emptyset $,如果是,轉步驟(5);否則,返回至步驟(3); (5) 根據(jù)組播光樹Tk大小,在距離物理損傷約束下基于HSR為組播選擇最佳的調制等級,并計算組播Rk所需頻隙數(shù)n,確定頻隙索引起止編號; (6) 統(tǒng)計光樹Tk中所有鏈路的空閑頻譜資源,判斷是否有頻譜塊滿足組播的帶寬需求,若有,轉步驟(7);否則,跳至步驟(8); (7) 為組播Rk建立光樹連接,使用FF方法為組播Rk分配頻譜,計算網(wǎng)絡總能耗PT,轉步驟(11); (8) 根據(jù)光樹中所有鏈路的空閑頻譜情況,判斷組播是否可通過HSR在光樹中間節(jié)點頻譜轉換滿足帶寬分配需求,若可以,則轉步驟(9);
否則,阻塞該組播請求,k =k+1,返回步驟(1),處理下一個組播;(9) 將鏈路上滿足組播請求的頻譜資源從小到大排序,如果頻譜塊大小相同,再按照頻譜塊的起始索引值大小由小到大排序;確定頻譜不一
致的光樹中間節(jié)點進行頻譜轉換,選擇頻譜起始索引值小的頻譜塊分配給組播光樹,并計算網(wǎng)絡能耗PT,選擇使得網(wǎng)絡能耗最小的中間
節(jié)點頻譜轉換方案;(10) 若經(jīng)中間節(jié)點頻譜轉換的組播頻譜分配成功,轉步驟(11);否則,阻塞組播,k =k+1,轉步驟(1); (11) 組播Rk路由和頻譜分配成功,記錄光樹Tk和各鏈路上頻隙分配的起止頻隙編號,網(wǎng)絡能耗PT; (12) AMEESA算法結束,輸出各成功傳輸組播的路由光樹、頻譜分配和網(wǎng)絡能耗。 下載: 導出CSV
-
鮑寧海, 劉翔, 張治中, 等. WDM節(jié)能光網(wǎng)絡中的抗毀保護算法研究[J]. 重慶郵電大學學報: 自然科學版, 2012, 24(3): 278–282. doi: 10.3979/j.issn.1673-825X.2012.03.002BAO Ninghai, LIU Xiang, ZHANG Zhizhong, et al. Survivable protection algorithm in WDM energy-efficient optical network[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2012, 24(3): 278–282. doi: 10.3979/j.issn.1673-825X.2012.03.002 劉煥淋, 熊翠連, 陳勇. 頻譜效率優(yōu)先的任播路由沖突感知的彈性光網(wǎng)絡資源重配置[J]. 電子與信息學報, 2017, 39(7): 1697–1703. doi: 10.11999/JEIT161093LIU Huanlin, XIONG Cuilian, and CHEN Yong. Collision-aware reconfiguration resource based on spectrum efficiency first for anycast routing in elastic optical networks[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1697–1703. doi: 10.11999/JEIT161093 熊余, 劉川菠, 孫鵬. 考慮業(yè)務服務質量的光線路終端節(jié)能算法[J]. 重慶郵電大學學報: 自然科學版, 2017, 29(2): 208–215. doi: 10.3979/j.issn.1673-825X.2017.02.011XIONG Yu, LIU Chuanbo, and SUN Peng. Energy saving algorithm for optical line terminal considering quality of service[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2017, 29(2): 208–215. doi: 10.3979/j.issn.1673-825X.2017.02.011 HAMZA H S. Convert-and-deliver: Convert-and-Deliver: A scalable multicast optical cross-connect with reduced power splitting fan-out[J]. The Journal of Supercomputing, 2012, 62(3): 1189–1212. doi: 10.1007/s11227-011-0565-9 PASCAR L, KARUBI R, FRENKEL B, et al. Port-reconfigurable, wavelength-selective switch array for colorless/directionless /contentionless optical add/drop multiplexing[C]. The International Conference on Photonics in Switching, Florence, Italy, 2015: 16–18, ZONG Liangjia, ZHAO Han, YAN Yunfei, et al. Demonstration of quasi-contentionless flexible ROADM based on a multiport WXC[J]. Journal of Optical Communications and Networking, 2016, 8(7): A141–A151. doi: 10.1364/JOCN.8.00A141 PATEL A N, JI P N, JUE J P, et al. Multicast traffic grooming in flexible optical WDM networks[C]. SPIE Conference on Optical Metro Networks and Short-Haul Systems V, San Francisco, USA, 2013: 864605. YANG Haining, ROBERTSON B, WILKINSON P, et al. Low-cost CDC ROADM architecture based on stacked wavelength selective switches[J]. Journal of Optical Communications and Networking, 2017, 9(5): 375–384. doi: 10.1364/JOCN.9.000375 SYGLETOS S, FABBRI S, FERREIRA F, et al. All-optical add-drop multiplexer for OFDM signals[C]. The International Conference on Transparent Optical Networks, Budapest, Hungary, 2015: 1–4. LIN H and ZHUANG Yuanxi. An algorithm for dynamic multicast traffic grooming in light-trail optical WDM mesh networks[C]. The International Conference on Computing, Networking and Communications, Maui, USA, 2018: 134–138. LIU Huanlin, YIN Yarui, and CHEN Yong. Energy-efficient multicast traffic grooming strategy based on light-tree splitting for elastic optical networks[J]. Optical Fiber Technology, 2017, 36: 374–381. doi: 10.1016/j.yofte.2017.05.014 PAPANIKOLAOU P, SOUMPLIS P, MANOUSAKIS K, et al. Minimizing energy and cost in fixed-grid and flex-grid networks[J]. Journal of Optical Communications and Networking, 2015, 7(4): 337–351. doi: 10.1364/JOCN.7.000337 RUDNICK R, TOLMACHEV A, SINEFELD D, et al. Sub-GHz resolution photonic spectral processor and its system applications[J]. Journal of Lightwave Technology, 2017, 35(11): 2218–2226. doi: 10.1109/JLT.2016.2647710 TANAKA T, INUI T, KADOHATA A, et al. Multiperiod IP-over-elastic network reconfiguration with adaptive bandwidth resizing and modulation[J]. Journal of Optical Communications and Networking, 2016, 8(7): A180–A190. doi: 10.1364/JOCN.8.00A180 VIZCAíNO J L, SOTO P, YE Y B, et al. Differentiated quality of protection: an energy-and spectral-efficient resilience scheme for survivable static and dynamic optical transport networks with fixed-and flexible-grid[J]. Optical Switching and Networking, 2015, 19: 78–96. doi: 10.1016/j.osn.2015.03.006 -