一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于博弈的機器人認知情感交互模型

黃宏程 劉寧 胡敏 陶洋 寇蘭

黃宏程, 劉寧, 胡敏, 陶洋, 寇蘭. 基于博弈的機器人認知情感交互模型[J]. 電子與信息學報, 2019, 41(10): 2471-2478. doi: 10.11999/JEIT180867
引用本文: 黃宏程, 劉寧, 胡敏, 陶洋, 寇蘭. 基于博弈的機器人認知情感交互模型[J]. 電子與信息學報, 2019, 41(10): 2471-2478. doi: 10.11999/JEIT180867
Hongcheng HUANG, Ning LIU, Min HU, Yang TAO, Lan KOU. Cognitive Emotion Interaction Model of Robot Based on Game Theory[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2471-2478. doi: 10.11999/JEIT180867
Citation: Hongcheng HUANG, Ning LIU, Min HU, Yang TAO, Lan KOU. Cognitive Emotion Interaction Model of Robot Based on Game Theory[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2471-2478. doi: 10.11999/JEIT180867

基于博弈的機器人認知情感交互模型

doi: 10.11999/JEIT180867
基金項目: 國家自然科學基金(61871062),重慶郵電大學科研基金(A2018-07)
詳細信息
    作者簡介:

    黃宏程:男,1979年生,副教授,研究方向為認知情感計算研究、復(fù)雜網(wǎng)絡(luò)與信息傳播理論

    劉寧:女,1995年生,碩士生,研究方向為認知情感計算研究

    胡敏:女,1971年生,副教授,研究方向為信息通信網(wǎng)絡(luò)體系結(jié)構(gòu)、人機交互理論與技術(shù)應(yīng)用

    陶洋:男,1964年生,教授,研究方向為人工智能、大數(shù)據(jù)與計算智能

    寇蘭:女,1963年生,副教授,研究方向為D2D通信、人機交互理論與技術(shù)應(yīng)用

    通訊作者:

    陶洋 taoyang@cqupt.edu.cn

  • 中圖分類號: TP242.6

Cognitive Emotion Interaction Model of Robot Based on Game Theory

Funds: The National Natural Science Foundation of China (61871062), The Scientific Research Foundation of Chongqing University of Posts and Telecommunications (A2018-07)
  • 摘要: 針對現(xiàn)有的人機交互系統(tǒng)普遍存在情感缺失、參與人參與度不高的問題,該文依據(jù)PAD情感空間提出一種基于博弈的機器人認知情感交互模型。首先,對參與人的交互輸入情感進行評估并分析當前人機交互關(guān)系,提取友好度和共鳴度2個影響因素。其次,模擬人際交往的心理博弈過程對參與人和機器人的情感生成過程進行建模,將嵌入博弈的子博弈完美均衡策略作為機器人的最優(yōu)情感選擇策略;最后,根據(jù)最優(yōu)情感策略更新機器人的情感狀態(tài)轉(zhuǎn)移概率,并以6種基本情感的空間坐標為標簽,得出受到情感刺激后機器人情感狀態(tài)的空間坐標。實驗結(jié)果表明,與其它認知交互模型相比,該文模型能夠減少機器人對外界情感刺激的依賴并有效引導(dǎo)參與人參與人機交互,為機器人的情感認知建模提供了新的方法和思路。
  • 圖  1  人機交互過程

    圖  2  機器人的情感策略選擇過程

    圖  3  不同認知模型作用下的機器人輸出情感與參與人輸入情感的關(guān)聯(lián)度分析

    圖  4  參與人與不同認知模型作用下的聊天機器人交互時的滿意度統(tǒng)計

    表  1  基于博弈的機器人認知情感交互模型構(gòu)建

     輸入:$k{{ - 1}}$次會話后友好度更新值$F(k - 1)$和機器人的情感狀態(tài)轉(zhuǎn)移概率${{\text{P}}_{\rm{R}}}(k - 1)$, $k$次會話參與人的交互輸入情感${\text{E}}_{{\rm{HR}}}^k$;
     輸出:$k + 1$次會話時機器人的情感值${\text{E}}_{{\rm{RH}}}^{k{{ + 1}}}$;
     Repeat:
     參與人輸入交互情感${\text{E}}_{{\rm{HR}}}^k$;
     根據(jù)式(1)—式(3)將${\text{E}}_{{\rm{HR}}}^k$評估轉(zhuǎn)化為強度值向量${\text{P}}({\text{E}}_{{\rm{HR}}}^k)$;
     根據(jù)式(8)—式(11)計算針對$k + 1$次會話機器人每種情感策略選擇,預(yù)測$k + 2$次會話參與人每種情感策略選擇,$k + 3$次會話機器人每種情
    感策略下參與人和機器人的效用值;
     根據(jù)式(12),式(13)求解機器人的情感選擇策略$s$;
     通過最優(yōu)情感策略$s$對機器人的情感狀態(tài)轉(zhuǎn)移概率進行更新,對機器人情感的空間坐標進行標定;
     更新人機交互友好度,并令$k = k + 2$;
     Until 參與人停止輸入交互情感;
     人機交互會話結(jié)束。
    下載: 導(dǎo)出CSV

    表  2  不同認知模型的自動評價結(jié)果

    模型MRRMAP
    Seq2Seq0.38360.4015
    ChatterBot0.46230.4923
    MECs0.59030.6091
    GCRs0.62690.6435
    本文0.65070.6756
    下載: 導(dǎo)出CSV

    表  3  參與人與不同認知模型作用下的機器人交互的次數(shù)與時間統(tǒng)計

    機器人的認知模型平均交互輪數(shù)(輪)平均交互時間(s)
    Seq2Seq998.32
    ChatterBot660.69
    MECs788.16
    GCRs10110.38
    本文12130.51
    下載: 導(dǎo)出CSV
  • TURKER B B, YEMEZ Y, SEZGIN T M, et al. Audio-facial laughter detection in naturalistic dyadic conversations[J]. IEEE Transactions on Affective Computing, 2017, 8(4): 534–545. doi: 10.1109/TAFFC.2017.2754256
    CHEN Min, HERRERA F, and HWANG K. Cognitive computing: Architecture, technologies and intelligent applications[J]. IEEE Access, 2018, 6: 19774–19783. doi: 10.1109/ACCESS.2018.2791469
    ZUCCO C, CALABRESE B, and CANNATARO M. Sentiment analysis and affective computing for depression monitoring[C]. The 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, USA, 2017: 1988–1995. doi: 10.1109/BIBM.2017.8217966.
    BELKAID M, CUPERLIER N, and GAUSSIER P. Autonomous cognitive robots need emotional modulations: Introducing the eMODUL model[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 49(1): 206–215. doi: 10.1109/TSMC.2018.2792542
    韓晶, 解侖, 劉欣, 等. 基于Gross認知重評的機器人認知情感交互模型[J]. 東南大學學報: 自然科學版, 2015, 45(2): 270–274. doi: 10.3969/j.issn.1001-0505.2015.02.014

    HAN Jing, XIE Lun, LIU Xin, et al. Cognitive emotion interaction model of robot based on Gross cognitive reappraisal[J]. Journal of Southeast University:Natural Science Edition, 2015, 45(2): 270–274. doi: 10.3969/j.issn.1001-0505.2015.02.014
    LIU Xin, XIE Lun, and WANG Zhiliang. Empathizing with emotional robot based on cognition reappraisal[J]. China Communications, 2017, 14(9): 100–113. doi: 10.1109/CC.2017.8068769
    ZHANG Rui, WANG Zhenyu, and MAI Dongcheng. Building emotional conversation systems using multi-task Seq2Seq learning[C]. The Sixth CCF International Conference on Natural Language Processing and Chinese Computing, Dalian, China, 2017: 612–621. doi: 10.1007/978-3-319-73618-1_51.
    RODRíGUEZ L F, GUTIERREZ-GARCIA J O, and RAMOS F. Modeling the interaction of emotion and cognition in Autonomous Agents[J]. Biologically Inspired Cognitive Architectures, 2016, 17: 57–70. doi: 10.1016/j.bica.2016.07.008
    NANTY A and GELIN R. Fuzzy controlled PAD emotional state of a NAO robot[C]. 2013 Conference on Technologies and Applications of Artificial Intelligence, Taipei, China, 2013: 90–96. doi: 10.1109/TAAI.2013.30.
    曹東巖. 基于強化學習的開放領(lǐng)域聊天機器人對話生成算法[D]. [碩士論文], 哈爾濱工業(yè)大學, 2017.

    CAO Dongyan. Research on reinforcement learning for open domain chatbot dialogue generation[D]. [Master dissertation], Harbin Institute of Technology, 2017.
    ZHOU Hao, HUANG Minlie, ZHANG Tianyang, et al. Emotional chatting machine: Emotional conversation generation with internal and external memory[C]. The Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 730–738.
    華生. 欲望心理學: 人際交往中的心理博弈[M]. 北京, 中央編譯出版社, 2016: 1–5.

    HUA Sheng. Psychology on Desire: Psychological Game in Interpersonal Communication[M]. Beijing: Central Compilation & Translation Press, 2016: 1–5.
    卜湛, 伍之昂, 曹杰, 等. 在線評論情感計算與博弈預(yù)測[J]. 電子學報, 2015, 43(12): 2530–2535. doi: 10.3969/j.issn.0372-2112.2015.12.028

    BU Zhan, WU Zhiang, CAO Jie, et al. Affective computing and game theory based prediction for online reviews[J]. Acta Electronica Sinica, 2015, 43(12): 2530–2535. doi: 10.3969/j.issn.0372-2112.2015.12.028
    PARK J W, KIM W H, LEE W H, et al. How to completely use the PAD space for socially interactive robots[C]. 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 2011: 3005–3010. doi: 10.1109/ROBIO.2011.6181762.
    LI Jiaqi, ZHANG Chunyan, SUN Qinglin, et al. Changing the Intensity of Interaction Based on Individual Behavior in the Iterated Prisoner’s Dilemma Game[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(4): 506–517. doi: 10.1109/TEVC.2016.2628385
    MARTINICH L P. Top ten lessons for managers: Deep dive into interpersonal communication[J]. IEEE Engineering Management Review, 2017, 45(2): 27–29. doi: 10.1109/EMR.2017.2701511
    SHANG Lifeng, LU Zhengdong, and LI Hang. Neural responding machine for short-text conversation[C]. The 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China, 2015: 1577-1586. doi: 10.3115/v1/p15-1152.
    COX G. ChatterBot tutorial[EB/OL]. https://chatterbot.readthedocs.io/en/stable/tutorial.html, 2018.
    SUTSKEVER I, VINYALS O, and LE Q V. Sequence to sequence learning with neural networks[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 3104–3112.
    WU Yu, WU Wei, XING Chen, et al. Sequential matching network: A new architecture for multi-turn response selection in retrieval-based chatbots[C]. The 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017: 496–505.
  • 加載中
圖(4) / 表(3)
計量
  • 文章訪問數(shù):  2942
  • HTML全文瀏覽量:  1202
  • PDF下載量:  130
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-09-02
  • 修回日期:  2019-02-26
  • 網(wǎng)絡(luò)出版日期:  2019-04-03
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回