一種基于分布式壓縮感知的礦井目標指紋數(shù)據(jù)庫建立方法
doi: 10.11999/JEIT180857
-
中國礦業(yè)大學(北京)機電與信息工程學院 ??北京 ??100083
A Method of Establishing Mine Target Fingerprint Database Based on Distributed Compressed Sensing
-
School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
-
摘要: 針對目前國內礦井目標定位精度低和定位實時性差的現(xiàn)況,該文提出一種基于分布式壓縮感知原理構造指紋數(shù)據(jù)庫的方法,該方法在離線階段只需采集少量巷道中的指紋信息(參考節(jié)點ID信息、基于電磁波到達時間(TOA)的距離測量值和實際距離值),便可高概率重構礦井目標指紋數(shù)據(jù)庫指紋信息,從而達到減少數(shù)據(jù)采集工作量和提高工作效率的目的。后續(xù)在線階段,只需獲得某時刻參考節(jié)點ID信息和目標節(jié)點被參考節(jié)點測得的實時TOA距離測量值,根據(jù)模式匹配方法可獲得該時刻目標節(jié)點距離參考節(jié)點的待估距離值,保證了定位精度和定位實時性。在此基礎上,提出一種改進的壓縮采樣修正匹配追蹤算法(CoSaMMP)進行指紋信息重構,該算法利用折半法增大裁剪力度從而有效縮短重構數(shù)據(jù)時間。仿真結果表明所提算法的可行性及有效性。
-
關鍵詞:
- 分布式壓縮感知 /
- 指紋數(shù)據(jù)庫 /
- 壓縮采樣修正匹配追蹤 /
- TOA測距
Abstract: A method of establishing a fingerprint database, which is based on distributed compressed sensing, is proposed to improve the low positioning accuracy and poor real-time positioning that exist in the current mine target positioning in China. Using the method, the fingerprint information of mine target fingerprint database can be reconstructed with high probability by collecting only a few fingerprint information (reference node IDs, Time Of Arrival (TOA) measurements based on electromagnetic wave and actual distance values) in the roadway in the off-line stage. Therefore, the data collection workload can be reduced and the work efficiency can be improved as well. In the subsequent on-line stage, according to the pattern matching method, the estimated distance between the target node and the reference nodes at the certain time can be obtained only by getting the reference node IDs and the real-time TOA measurements measured by the reference nodes at a certain moment, which guarantees the positioning accuracy and positioning real-time performance. Based on this method, an improved Compressive Sampling Modifying Matching Pursuit (CoSaMMP) algorithm is proposed to reconstruct the fingerprint information. The algorithm can effectively shorten the reconstruction time by using the folding method to increase the cutting force. The simulation results show that the proposed algorithm is feasible and effective. -
表 1 指紋數(shù)據(jù)庫指紋信號
指紋信號 指紋數(shù)據(jù) 1 ${A_1}$,${A_1}$,$ ·\!·\!· $,${A_1}$($N$個${A_1}$) 2 ${A_2}$,${A_2}$,$ ·\!·\!· $,${A_2}$($N$個${A_2}$) 3 ${B_1}$,${B_1}$,$ ·\!·\!· $,${B_1}$($N$個${B_1}$) 4 ${B_2}$,${B_2}$,$ ·\!·\!· $,${B_2}$($N$個${B_2}$) 5 ${d_{11}}(p)$,${d_{21}}(p)$,$ ·\!·\!· $,${d_{N1}}(p)$ 6 ${d_{12}}(p)$,${d_{22}}(p)$,$ ·\!·\!· $,${d_{N2}}(p)$ 7 ${d_{13}}(p)$,${d_{23}}(p)$,$ ·\!·\!· $,${d_{N3}}(p)$ 8 ${d_{14}}(p)$,${d_{24}}(p)$,$ ·\!·\!· $,${d_{N4}}(p)$ 9 $d\,'\!\!_{11}(p)$,$d\,'\!\!_{21}(p)$,$ ·\!·\!· $,$d\,'\!\!_{N1}(p)$ 10 $d\,'\!\!_{12}(p)$,$d\,'\!\!_{22}(p)$,$ ·\!·\!· $,$d\,'\!\!_{N2}(p)$ 11 $d\,'\!\!_{13}(p)$,$d\,'\!\!_{23}(p)$,$ ·\!·\!· $,$d\,'\!\!_{N3}(p)$ 12 $d\,'\!\!_{14}(p)$,$d\,'\!\!_{24}(p)$,$ ·\!·\!· $,$d\,'\!\!_{N4}(p)$ 下載: 導出CSV
表 2 各算法的時間復雜度
算法 時間復雜度(M<N) SVR-Kriging $O\left( {{N^3}} \right)$ CoSaMP O(MN) CoSaMMP $\le$O(MN) ICoSaMMP(本文算法) $\le$O(MN) 下載: 導出CSV
表 3 本文算法各信號平均誤差
采樣數(shù) l = 9 l = 10 l = 11 l = 12 Ml = 100 0.98 1.06 0.90 0.96 Ml = 125 0.85 0.76 0.92 0.86 下載: 導出CSV
表 4 誤差對比
定位算法 本文算法 SVR-Kriging算法 采樣數(shù) Ml = 100 Ml = 125 Ml = 100 最大誤差 2.37 1.85 1.90 最小誤差 0.43 0.32 0.39 平均誤差 0.98 0.85 0.92 下載: 導出CSV
-
孫繼平. 2016年版《煤礦安全規(guī)程》監(jiān)控與通信條款解析[J]. 工礦自動化, 2016, 42(5): 1–8. doi: 10.13272/j.issn.1671-251x.2016.05.001SUN Jiping. Explanations for part of monitoring and communication of Coal Mine Safety Regulations of 2016 Edition[J]. Industry and Mine Automation, 2016, 42(5): 1–8. doi: 10.13272/j.issn.1671-251x.2016.05.001 鄧兵, 孫正波, 楊樂, 等. 存在站址誤差時的線性校正TDOA定位算法[J]. 西安電子科技大學學報: 自然科學版, 2017, 44(4): 106–111. doi: 10.3969/j.issn.1001-2400.2017.04.019DENG Bing, SUN Zhengbo, YANG Le, et al. TDOA localization with linear-correction in the presence of sensor position errors[J]. Journal of Xidian University, 2017, 44(4): 106–111. doi: 10.3969/j.issn.1001-2400.2017.04.019 田強, 馮大政, 楊凡, 等. 基于線性校正的TOA聯(lián)合同步與定位算法[J]. 系統(tǒng)工程與電子技術, 2018, 40(2): 245–249. doi: 10.3969/j.issn.1001-506X.2018.02.01TIAN Qiang, FENG Dazheng, YANG Fan, et al. Joint TOA-based synchronization and localization via linear-correction technique[J]. Systems Engineering and Electronics, 2018, 40(2): 245–249. doi: 10.3969/j.issn.1001-506X.2018.02.01 徐琨, 劉宏立, 馬子驥, 等. 容忍多徑效應的無線傳感網(wǎng)絡測距算法[J]. 儀器儀表學報, 2017, 38(10): 2461–2468. doi: 10.3969/j.issn.0254-3087.2017.10.014XU Kun, LIU Hongli, MA Ziji, et al. Multipath-tolerant ranging algorithm in underground tunnel for wireless sensor networks[J]. Chinese Journal of Scientific Instrument, 2017, 38(10): 2461–2468. doi: 10.3969/j.issn.0254-3087.2017.10.014 CHEN Hongyang, LIU Bin, HUANG Pei, et al. Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks[J]. Mobile Networks and Applications, 2012, 17(1): 90–99. doi: 10.1007/s11036-010-0281-3 WANG Gang and CHEN Hongyang. An importance sampling method for TDOA-based source localization[J]. IEEE Transactions on Wireless Communications, 2011, 10(5): 1560–1568. doi: 10.1109/TWC.2011.030311.101011 李論, 張著洪, 丁恩杰, 等. 基于RSSI的煤礦巷道高精度定位算法研究[J]. 中國礦業(yè)大學學報, 2017, 46(1): 183–191, 200. doi: 10.13247/j.cnki.jcumt.000632LI Lun, ZHANG Zhuhong, DING Enjie, et al. Precision positioning algorithm in coal mine tunnel based on RSSI[J]. Journal of China University of Mining &Technology, 2017, 46(1): 183–191, 200. doi: 10.13247/j.cnki.jcumt.000632 郝麗娜, 張秀均, 郁萬里, 等. 基于RSS手指模的煤礦井下WLAN定位方法[J]. 傳感器與微系統(tǒng), 2012, 31(9): 46–49. doi: 10.13873/j.1000-97872012.09.020HAO Lina, ZHANG Xiujun, YU Wanli, et al. Underground coal mine WLAN localization algorithm based on RSS fingerprinting[J]. Transducer and Microsystem Technologies, 2012, 31(9): 46–49. doi: 10.13873/j.1000-97872012.09.020 孫繼平, 李晨鑫. 基于卡爾曼濾波和指紋定位的礦井TOA定位方法[J]. 中國礦業(yè)大學學報, 2014, 43(6): 1127–1133. doi: 10.13247/j.cnki.jcumt.000117SUN Jiping and LI Chenxin. Mine time of arrival positioning method based on Kalman filtering and fingerprint positioning[J]. Journal of China University of Mining &Technology, 2014, 43(6): 1127–1133. doi: 10.13247/j.cnki.jcumt.000117 王紅軍, 周宇, 王倫文. 基于SVR-Kriging插值的礦井工人二維指紋定位數(shù)據(jù)庫構建算法[J]. 電子與信息學報, 2017, 39(11): 2571–2578. doi: 10.11999/JEIT170058WANG Hongjun, ZHOU Yu, and WANG Lunwen. Establishment algorithm of two dimensional fingerprint database for mine workers based on SVR-Kriging interpolation[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2571–2578. doi: 10.11999/JEIT170058 DUARTE M F, SARVOTHAM S, BARON D, et al. Distributed compressed sensing of jointly sparse signals[C]. Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2005: 1537–1541. doi: 10.1109/ACSSC.2005.1600024. CANDES E J and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203–4215. doi: 10.1109/TIT.2005.858979 徐勇. 分布式壓縮感知的算法及其應用研究[D]. [博士論文], 中國地質大學, 2015: 2–47.XU Yong. The research on algorithms of distributed compressed sensing and their applications[D]. [Ph.D. dissertation], China University of Geosciences, 2015: 2–47. GUO Jiateng, JIANG Jizhou, WU Lixin, et al. 3D modeling for mine roadway from laser scanning point cloud[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 4452–4455. doi: 10.1109/IGARSS.2016.7730160. 徐志明, 田子建, 王文清, 等. 基于壓縮感知的區(qū)域離散化礦井目標定位方法[J]. 工礦自動化, 2018, 44(8): 67–70. doi: 10.13272/j.issn.1671-251x.2018020005XU Zhiming, TIAN Zijian, WANG Wenqing, et al. Region discretization mine target positioning method based on compressed sensing[J]. Industry and Mine Automation, 2018, 44(8): 67–70. doi: 10.13272/j.issn.1671-251x.2018020005 甘偉, 許錄平, 張華, 等. 一種貪婪自適應壓縮感知重構[J]. 西安電子科技大學學報: 自然科學版, 2012, 39(3): 50–57, 79. doi: 10.3969/j.issn.1001-2400.2012.03.008GAN Wei, XU Luping, ZHANG Hua, et al. Greedy adaptive recovery algorithm for compressed sensing[J]. Journal of Xidian University, 2012, 39(3): 50–57, 79. doi: 10.3969/j.issn.1001-2400.2012.03.008 WANG Qun and LIU Zhiwen. A robust and efficient algorithm for distributed compressed sensing[J]. Computers & Electrical Engineering, 2011, 37(6): 916–926. doi: 10.1016/j.compeleceng.2011.09.008 NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301–321. doi: 10.1016/j.acha.2008.07.002 -