一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

大整數(shù)乘法器的FPGA設(shè)計與實現(xiàn)

謝星 黃新明 孫玲 韓賽飛

謝星, 黃新明, 孫玲, 韓賽飛. 大整數(shù)乘法器的FPGA設(shè)計與實現(xiàn)[J]. 電子與信息學報, 2019, 41(8): 1855-1860. doi: 10.11999/JEIT180836
引用本文: 謝星, 黃新明, 孫玲, 韓賽飛. 大整數(shù)乘法器的FPGA設(shè)計與實現(xiàn)[J]. 電子與信息學報, 2019, 41(8): 1855-1860. doi: 10.11999/JEIT180836
Xing XIE, Xinming HUANG, Ling SUN, Saifei HAN. FPGA Design and Implementation of Large Integer Multiplier[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1855-1860. doi: 10.11999/JEIT180836
Citation: Xing XIE, Xinming HUANG, Ling SUN, Saifei HAN. FPGA Design and Implementation of Large Integer Multiplier[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1855-1860. doi: 10.11999/JEIT180836

大整數(shù)乘法器的FPGA設(shè)計與實現(xiàn)

doi: 10.11999/JEIT180836
基金項目: 國家自然科學基金(61571246),江蘇省研究生科研與實踐創(chuàng)新計劃項目(KYCX17-1920)
詳細信息
    作者簡介:

    謝星:男,1985年生,博士生,研究方向為信息安全

    黃新明:男,1974年生,教授,研究方向為VLSI設(shè)計、高性能計算

    孫玲:女,1976年生,教授,研究方向為專用集成電路設(shè)計、系統(tǒng)集成技術(shù)

    通訊作者:

    孫玲 sun.l@ntu.edu.cn

  • 中圖分類號: TN918.91; TN492

FPGA Design and Implementation of Large Integer Multiplier

Funds: The National Natural Science Foundation of China (61571246), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX17-1920)
  • 摘要: 大整數(shù)乘法是公鑰加密中最為核心的計算環(huán)節(jié),實現(xiàn)運算快速的大數(shù)乘法單元是RSA, ElGamal,全同態(tài)等密碼體制中急需解決的問題之一。針對全同態(tài)加密(FHE)應(yīng)用需求,該文提出一種基于Sch?nhage-Strassen算法(SSA)的768 kbit大整數(shù)乘法器硬件架構(gòu)。采用并行架構(gòu)實現(xiàn)了其關(guān)鍵模塊64k點有限域快速數(shù)論變換(NTT)的運算,并主要采用加法和移位操作以保證并行處理的最大化,有效提高了處理速度。該大整數(shù)乘法器在Stratix-V FPGA上進行了硬件驗證,通過與CPU上使用數(shù)論庫(NTL)和GMP庫實現(xiàn)的大整數(shù)乘法運算結(jié)果對比,驗證了該文設(shè)計方法的正確性和有效性。實驗結(jié)果表明,該方法實現(xiàn)的大整數(shù)乘法器運算時間比CPU平臺上的運算大約有8倍的加速。
  • 圖  1  樹形大數(shù)求和單元結(jié)構(gòu)圖

    圖  2  基-32 NTT運算結(jié)構(gòu)圖

    圖  3  1024點NTT架構(gòu)圖

    圖  4  64k點硬件架構(gòu)圖

    圖  5  大整數(shù)乘法器架構(gòu)圖

    表  1  主要大整數(shù)乘法算法時間復雜度

    算法時間復雜度
    grammar-school$O({N^2})$
    Karatsuba-Ofman$O({N^{\ln 3/\ln 2}})$
    Toom-Cook$O({N^{\ln (2k - 1)/\ln (k)}})$
    Sch?nhage-Strassen (SSA)$O(N\log N\log \log N)$
    下載: 導出CSV

    表  2  素數(shù)p的單位根${r_N}$

    NTT點數(shù)單位根${r_N}$
    2296
    4248
    8224
    16212
    3226
    6423
    下載: 導出CSV

    表  3  Stratix-V FGPA綜合結(jié)果

    邏輯單元Stratix V
    占用資源數(shù)總資源數(shù)利用率(%)
    ALUTs24022971840033
    Logic registers236088143680016
    Total block Memory (bit)162529285406720030
    Total DSP blocks28835282
    最大頻率(MHz)98.02
    下載: 導出CSV

    表  4  CPU和FPGA上性能比較

    計算時間(ms)加速倍數(shù)
    I7-7700 CPU3.3501
    本文設(shè)計0.4198
    下載: 導出CSV

    表  5  實現(xiàn)結(jié)果對比

    設(shè)計位數(shù)(kbit)頻率(MHz)計算時間(ms)占用資源數(shù)
    文獻[17]7681812.307.6k ALUTs+3.4k regisiters
    文獻[18]768100463k ALUTs+336k regisiters
    本文76898.020.419240k ALUTs+236k regisiters
    下載: 導出CSV
  • 光炎, 祝躍飛, 顧純祥, 等. 一種針對全同態(tài)加密體制的密鑰恢復攻擊[J]. 電子與信息學報, 2013, 35(12): 2999–3004. doi: 10.3724/SP.J.1146.2013.00300

    GUANG Yan, ZHU Yuefei, GU Chunxiang, et al. A key recovery attack on fully homomorphic encryption scheme[J]. Journal of Electronics &Information Technology, 2013, 35(12): 2999–3004. doi: 10.3724/SP.J.1146.2013.00300
    FENG Xiang and LI Shuguo. Design of an area-effcient million-bit integer multiplier using double modulus NTT[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(9): 2658–2662. doi: 10.1109/TVLSI.2017.2691727
    陳智罡. 基于格的全同態(tài)加密研究與設(shè)計[D]. [博士論文], 南京航空航天大學, 2015: 1–5.

    CHEN Zhigang. Research and design of fully homomorphic encryption based on lattice[D]. [Ph.D. dissertation], Nanjing University of Aeronautics and Astronautics, 2015: 1–5.
    GENTRY C and HALEVI S. Implementing Gentry’s fully-homomorphic encryption scheme[C]. The 30th Annual International Conference on Theory and Applications of Cryptographic Techniques: Advances in Cryptology, Tallinn, Estonia, 2011: 129–148.
    GENTRY C. A fully homomorphic encryption scheme[D]. [Ph.D. dissertation], Stanford University, 2009.
    施佺, 韓賽飛, 黃新明, 等. 面向全同態(tài)加密的有限域FFT算法FPGA設(shè)計[J]. 電子與信息學報, 2018, 40(1): 57–62. doi: 10.11999/JEIT170312

    SHI Quan, HAN Saifei, HUANG Xinming, et al. Design of finite field FFT for fully homomorphic encryption based on FPGA[J]. Journal of Electronics &Information Technology, 2018, 40(1): 57–62. doi: 10.11999/JEIT170312
    ?ZTüRK E, DOR?Z Y, SAVA? E, et al. A custom accelerator for homomorphic encryption applications[J]. IEEE Transactions on Computers, 2017, 66(1): 3–16. doi: 10.1109/TC.2016.2574340
    YE J H and SHIEH M D. Low-complexity VLSI design of large integer multipliers for fully homomorphic encryption[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(9): 1727–1736. doi: 10.1109/TVLSI.2018.2829539
    POLLARD J M. The fast Fourier transform in a finite field[J]. Mathematics of Computation, 1971, 25(114): 365–374. doi: 10.1090/S0025-5718-1971-0301966-0
    WANG Wei, HUANG Xinming, EMMART N, et al. VLSI design of a large-number multiplier for fully homomorphic encryption[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2014, 22(9): 1879–1887. doi: 10.1109/TVLSI.2013.2281786
    RAFFERTY C, O’NEILL M, and HANLEY N. Evaluation of large integer multiplication methods on hardware[J]. IEEE Transactions on Computers, 2017, 66(8): 1369–1382. doi: 10.1109/TC.2017.2677426
    ROY S S, VERCAUTEREN F, VLIEGEN J, et al. Hardware assisted fully homomorphic function evaluation and encrypted search[J]. IEEE Transactions on Computers, 2017, 66(9): 1562–1572. doi: 10.1109/TC.2017.2686385
    DOR?Z Y, ?ZTüRK E, and SUNAR B. Accelerating fully homomorphic encryption in hardware[J]. IEEE Transactions on Computers, 2015, 64(6): 1509–1521. doi: 10.1109/TC.2014.2345388
    WANG Wei, HU Yin, CHEN Lianmu, et al. Accelerating fully homomorphic encryption using GPU[C]. 2012 IEEE Conference on High Performance Extreme Computing, Waltham, USA, 2012: 1–5.
    HUANG Xinming and WANG Wei. A novel and efficient design for an RSA cryptosystem with a very large key size[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62(10): 972–976. doi: 10.1109/TCSII.2015.2458033
    JOHNSON L G. Conflict free memory addressing for dedicated FFT hardware[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1992, 39(5): 312–316. doi: 10.1109/82.142032
    FENG Xiang and LI Shuguo. Accelerating an FHE integer multiplier using negative wrapped convolution and Ping-Pong FFT[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(1): 121–125. doi: 10.1109/TCSII.2018.2840108
    WANG Wei and HUANG Xinming. FPGA implementation of a large-number multiplier for fully homomorphic encryption[C]. Proceedings of 2013 IEEE International Symposium on Circuits and Systems, Beijing, China, 2013: 2589–2592.
  • 加載中
圖(5) / 表(5)
計量
  • 文章訪問數(shù):  3984
  • HTML全文瀏覽量:  2318
  • PDF下載量:  205
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-08-27
  • 修回日期:  2019-02-15
  • 網(wǎng)絡(luò)出版日期:  2019-02-25
  • 刊出日期:  2019-08-01

目錄

    /

    返回文章
    返回