一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于粒子群優(yōu)化的對抗樣本生成算法

錢亞冠 盧紅波 紀守領(lǐng) 周武杰 吳淑慧 云本勝 陶祥興 雷景生

錢亞冠, 盧紅波, 紀守領(lǐng), 周武杰, 吳淑慧, 云本勝, 陶祥興, 雷景生. 基于粒子群優(yōu)化的對抗樣本生成算法[J]. 電子與信息學報, 2019, 41(7): 1658-1665. doi: 10.11999/JEIT180777
引用本文: 錢亞冠, 盧紅波, 紀守領(lǐng), 周武杰, 吳淑慧, 云本勝, 陶祥興, 雷景生. 基于粒子群優(yōu)化的對抗樣本生成算法[J]. 電子與信息學報, 2019, 41(7): 1658-1665. doi: 10.11999/JEIT180777
Yaguan QIAN, Hongbo LU, Shouling JI, Wujie ZHOU, Shuhui WU, Bensheng YUN, Xiangxing TAO, Jingsheng LEI. Adversarial Example Generation Based on Particle Swarm Optimization[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1658-1665. doi: 10.11999/JEIT180777
Citation: Yaguan QIAN, Hongbo LU, Shouling JI, Wujie ZHOU, Shuhui WU, Bensheng YUN, Xiangxing TAO, Jingsheng LEI. Adversarial Example Generation Based on Particle Swarm Optimization[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1658-1665. doi: 10.11999/JEIT180777

基于粒子群優(yōu)化的對抗樣本生成算法

doi: 10.11999/JEIT180777
基金項目: 浙江省自然科學基金(LY17F020011, LY18F020012),浙江省公益技術(shù)應用研究項目(LGG19F030001),國家自然科學基金(61772466, 61672337, 11771399)
詳細信息
    作者簡介:

    錢亞冠:男,1976年生,副教授,研究方向為機器學習安全、計算機視覺

    盧紅波:男,1993年生,碩士生,研究方向為機器學習安全

    紀守領(lǐng):男,1986年生,研究員,主要研究方向為人工智能安全、數(shù)據(jù)驅(qū)動安全與隱私保護

    周武杰:男,1983年生,副教授,主要研究方向為機器視覺

    吳淑慧:女,1975年生,講師,研究領(lǐng)域為深度神經(jīng)網(wǎng)絡

    云本勝:男,1980年生,講師,研究領(lǐng)域為機器學習與數(shù)據(jù)挖掘

    陶祥興:男,1966年生,教授,主要研究領(lǐng)域為信號處理與金融數(shù)據(jù)分析

    雷景生:男,1967年生,教授,主要研究領(lǐng)域為機器學習與大數(shù)據(jù)處理

    通訊作者:

    錢亞冠 QianYaGuan@zust.edu.cn

  • 中圖分類號: TP309.2

Adversarial Example Generation Based on Particle Swarm Optimization

Funds: Zhejiang Natural Science Foundation (LY17F020011, LY18F020012), The Scientific Project of Zhejiang Provincial Science and Technology Department (LGG19F030001), The National Natural Science Foundation of China(61772466, 61672337, 11771399)
  • 摘要: 隨著機器學習被廣泛的應用,其安全脆弱性問題也突顯出來。該文提出一種基于粒子群優(yōu)化(PSO)的對抗樣本生成算法,揭示支持向量機(SVM)可能存在的安全隱患。主要采用的攻擊策略是篡改測試樣本,生成對抗樣本,達到欺騙SVM分類器,使其性能失效的目的。為此,結(jié)合SVM在高維特征空間的線性可分的特點,采用PSO方法尋找攻擊顯著性特征,再利用均分方法逆映射回原始輸入空間,構(gòu)建對抗樣本。該方法充分利用了特征空間上線性模型上易尋優(yōu)的特點,同時又利用了原始輸入空間篡改數(shù)據(jù)的可解釋性優(yōu)點,使原本難解的優(yōu)化問題得到實現(xiàn)。該文對2個公開數(shù)據(jù)集進行實驗,實驗結(jié)果表明,該方法通過不超過7%的小擾動量生成的對抗樣本均能使SVM分類器失效,由此證明了SVM存在明顯的安全脆弱性。
  • 圖  1  手寫體數(shù)字圖像示例

    圖  2  人臉圖像示例

    圖  3  “三庭五眼”的人臉分割示例

    圖  4  不同擾動程度的圖像示例

    圖  5  人臉擾動前后的圖像示例

    圖  6  不同擾動量下的對象示例

    表  1  粒子群尋優(yōu)(PSO)算法

     輸入:$A$ //特征子集
     輸出:$B$ //顯著性特征
     (1) $d = \left| A \right|, B = \phi $ //$A = ({a^{(1)}}, {a^{(2)}}, ·\!·\!· , {a^{(d)}})$
     (2) FOR $ i \leftarrow 1, 2, ·\!·\!· , N $ DO
     (3)   ${{\text{s}}_i} \leftarrow {\rm rand}(d), {{\text{v}}_i} \leftarrow {\rm rand}(d)$ //初始化$N$個粒子的位置和
    速度
     (4)   ${{\text{p}}_i} \leftarrow {{\text{s}}_i}$ //${{\text{p}}_i}$為第$i$個粒子的當前最佳位置
     (5) END FOR
     (6) ${{\text{p}}_g} \leftarrow {{\text{p}}_j}$,其中$j \leftarrow \arg {{\rm max}_i} \;{\rm{fit}}({{\text{p}}_i}), i = 1, 2, ·\!·\!· , N$ //${{\text{p}}_g}$為所有
    粒子的當前最佳位置
     (7) FOR $ k \leftarrow 1, 2, ·\!·\!· , M $ DO //$M$為迭代次數(shù)
     (8)   FOR $i \leftarrow 1, 2, ·\!·\!· , N$ DO
     (9)     $\begin{gathered} {{\text{v}}_{i + 1}} \leftarrow {{\text{v}}_i} + {c_1}{r_1}({{\text{p}}_i} - {{\text{s}}_i}) \\ \quad\ \ + {c_2}{r_2}({{\text{p}}_g} - {{\text{s}}_i}) \\ \end{gathered} $
     (10)      ${{\text{s}}_{i + 1}} \leftarrow {{\text{s}}_i} + {{\text{v}}_{i + 1}}$
     (11)     IF ${\rm{fit}}({\text{s}}{}_{i + 1}) > {\rm{fit}}({\text{p}}{}_{i + 1}) $ THEN
     (12)      ${{\text{p}}_i} \leftarrow {{\text{s}}_{i + 1}}$
     (13)    END IF
     (14) END FOR
     (15) ${{\text{p}}_g} \leftarrow {{\text{p}}_j}$ 其中$j \leftarrow \arg {{\rm max}_i} \;{\rm{fit}}({{\text{p}}_i})$
     (16) END FOR
     (17) FOR $i \leftarrow 1, 2, ·\!·\!· , d $ DO
     (18) IF ${{\text{p}}_{{}_{gi}}} > 0.5 $ THEN
     (19)     $B \leftarrow B \cup \{ {a^{(i)}}\} $ //${a^{(i)}}$是${{\text{p}}_{{}_{gi}}}$對應的特征
     (20)  END IF
     (21) END FOR
     (22) RETURN $B$
    下載: 導出CSV

    表  2  輸入空間擾動算法

     輸入:$A$ //${\text{w}}$從大到小排序后對應的特征
      $B$ //顯著性特征
      ${{\text{X}}_0}$ //原始樣本
     輸出:$\Delta {\text{X}} $ //對抗樣本的擾動
     (1) $N = \left| B \right|, \Delta {\text{X}} = {\text{0}}$ //$N$為$B$的特征數(shù),$\Delta {\text{X}} $的大小與${{\text{X}}_0}$相
    同,且所有特征的初始值為0
     (2) FOR $ i \leftarrow 1, 2, ·\!·\!· , N$ DO
     (3)    $k \leftarrow {\rm index}({b^{(i)}})$ //$k$為$B = ({b^{(1)}}, {b^{(2)}}, ·\!·\!· , {b^{(n)}})$在特征空
    間的特征索引
     (4)    $I \leftarrow {\rm component}(k)$ // $I$為特征空間的第$k$個特征對應
    的“輸入空間特征集”
     (5)   $\sigma \leftarrow \delta (\theta , \lambda , I, {{\text{X}}_0})$//$\delta ( \cdot )$由式(11)得到
     (6)   FOR $j \leftarrow 1, 2, ·\!·\!· , \left| I \right| $ DO
     (7)     $\Delta {\text{X}}(j) \leftarrow \Delta {\text{X}}(j) + \sigma $
     (8)   END FOR
     (9) END FOR
     (10) RETURN $\Delta {\text{X}} $ //對抗樣本的擾動
    下載: 導出CSV

    表  3  測試集中各個手寫體的分類準確率(%)

    手寫體數(shù)字0123456789
    準確率98.8898.9495.1695.7496.1392.7197.1894.6593.9493.76
    下載: 導出CSV

    表  4  不同擾動量下各類手寫體數(shù)字的平均分類正確率(%)

    手寫體數(shù)字擾動前1%擾動3%擾動5%擾動7%擾動
    098.8895.3275.3737.4410.17
    198.9496.4831.9313.571.21
    295.1684.5472.1464.9358.65
    395.7481.7667.8950.2230.74
    496.1392.4442.988.760.39
    592.7189.3855.7318.375.65
    697.1894.6370.6430.5812.33
    794.6591.7169.8732.4317.47
    894.6594.1378.2135.3813.58
    993.9490.8552.7327.646.53
    下載: 導出CSV

    表  5  不同擾動比例下各對象的平均分類正確率(%)

    人臉序號1%擾動3%擾動5%擾動7%擾動
    195.1290.0268.8238.63
    287.6871.1354.9829.22
    391.1981.5758.1329.16
    489.4375.2752.2921.09
    590.7879.2743.5526.87
    687.9171.6260.1421.33
    783.2641.1215.678.31
    892.4370.2247.9329.83
    991.3375.7146.6228.11
    1094.6681.7357.4530.13
    1182.6368.2030.7910.32
    1298.7881.1766.0537.16
    1372.6557.2733.486.37
    1485.1763.3349.787.91
    1597.589.8570.2129.84
    下載: 導出CSV
  • BARRENO M, NELSON B, SEARS R, et al. Can machine learning be secure?[C]. Proceedings of 2006 ACM Symposium on Information, Computer and Communications Security, Taipei, China, 2006: 16–25. doi: 10.1145/1128817.1128824.
    LI Pan, ZHAO Wentao, LIU Qiang, et al. Security issues and their countermeasuring techniques of machine learning: A survey[J]. Journal of Frontiers of Computer Science & Technology, 2018, 12(2): 171–184.
    SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. http://arxiv.org/abs/1312.6199v4, 2014.
    PAPERNOT N, MCDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]. Proceedings of 2016 IEEE European Symposium on Security and Privacy, Saarbrucken, Germany, 2016: 372–387. doi: 10.1109/EuroSP.2016.36.
    PAPERNOT N, MCDANIEL P, GOODFELLOW I, et al. Practical black-box attacks against machine learning[EB/OL]. http://arxiv.org/abs/1602.02697v4, 2017.
    AKHTAR N and MIAN A. Threat of adversarial attacks on deep learning in computer vision: A survey[J]. IEEE Access, 2018, 6: 14410–14430. doi: 10.1109/ACCESS.2018.2807385
    CORTES C and VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. doi: 10.1007/BF00994018
    BIGGIO B, NELSON B, and LASKOV P. Support vector machines under adversarial label noise[C]. Proceedings of the 3rd Asian Conference on Machine Learning, Taoyuan, China, 2011, 20: 97–112.
    BIGGIO B, NELSON B, and LASKOV P. Poisoning attacks against support vector machines[EB/OL]. http://arxiv.org/abs/1206.6389v3, 2013.
    MEI Shike and ZHU Xiaojin. Using machine teaching to identify optimal training-set attacks on machine learners[C]. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, USA, 2015: 2871–2877.
    CHEN Zhipeng, TONDI B, LI Xiaolong, et al. A gradient-based pixel-domain attack against SVM detection of global image manipulations[C]. Proceedings of 2017 IEEE Workshop on Information Forensics and Security, Rennes, France, 2017: 1–6. doi: 10.1109/WIFS.2017.8267668.
    BIGGIO B, CORONA I, MAIORCA D, et al. Evasion attacks against machine learning at test time[EB/OL]. http://arxiv.org/abs/1708.06131, 2013.
    GOLLAND P. Discriminative direction for kernel classifiers[C]. Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver, British Columbia, Canada, 2001: 745–752.
    AMRAEE S, VAFAEI A, JAMSHIDI K, et al. Abnormal event detection in crowded scenes using one-class SVM[J]. Signal, Image and Video Processing, 2018, 12(6): 1115–1123. doi: 10.1007/s11760-018-1267-z
    BENMAHAMED Y, TEGUAR M, and BOUBAKEUR A. Application of SVM and KNN to Duval pentagon 1 for transformer oil diagnosis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(6): 3443–3451. doi: 10.1109/TDEI.2017.006841
    SCHNALL A and HECKMANN M. Feature-space SVM adaptation for speaker adapted word prominence detection[J]. Computer Speech & Language, 2019, 53: 198–216. doi: 10.1016/j.csl.2018.06.001
    ZHAO Rui and MAO Kezhi. Semi-random projection for dimensionality reduction and extreme learning machine in high-dimensional space[J]. IEEE Computational Intelligence Magazine, 2015, 10(3): 30–41. doi: 10.1109/MCI.2015.2437316
    EBERHART R and KENNEDY J. A new optimizer using particle swarm theory[C]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 2002: 39–43. doi: 10.1109/MHS.1995.494215.
    SHI Y and EBERHART R. A modified particle swarm optimizer[C]. Proceeding of 1998 IEEE International Conference on Evolutionary Computation, World Congress on Computational Intelligence, Anchorage, USA, 1998: 69–73. doi: 10.1109/ICEC.1998.699146.
    LIN S W, YING K C, CHEN S C, et al. Particle swarm optimization for parameter determination and feature selection of support vector machines[J]. Expert Systems with Applications, 2008, 35(4): 1817–1824. doi: 10.1016/j.eswa.2007.08.088
    LECUN Y, CORTES C, and BURGES C J C. The MNIST database of handwritten digits[EB/OL]. http://yann.lecun.com/exdb/mnist/, 2010.
    YALE. The Yale face database[OL]. http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html, 1997.
    何光輝, 唐遠炎, 房斌, 等. 圖像分割方法在人臉識別中的應用[J]. 計算機工程與應用, 2010, 46(28): 196–198. doi: 10.3778/j.issn.1002-8331.2010.28.055

    HE Guanghui, TANG Yuanyan, FANG Bin, et al. Image partition method in face recognition[J]. Computer Engineering and Applications, 2010, 46(28): 196–198. doi: 10.3778/j.issn.1002-8331.2010.28.055
  • 加載中
圖(6) / 表(5)
計量
  • 文章訪問數(shù):  3974
  • HTML全文瀏覽量:  1183
  • PDF下載量:  152
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-08-06
  • 修回日期:  2019-01-28
  • 網(wǎng)絡出版日期:  2019-02-15
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回