一類2次多項(xiàng)式混沌系統(tǒng)的均勻化方法研究
doi: 10.11999/JEIT180735 cstr: 32379.14.JEIT180735
-
1.
北京科技大學(xué)數(shù)理學(xué)院 ??北京 ??100083
-
2.
廈門大學(xué)嘉庚學(xué)院信息科學(xué)與技術(shù)學(xué)院 ??漳州 ??363105
Homogenization Method for the Quadratic Polynomial Chaotic System
-
1.
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
-
2.
School of Information Science and Technology, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China
-
摘要: 該文給出了一般的2次多項(xiàng)式混沌系統(tǒng)與Tent映射拓?fù)涔曹椀某浞謼l件,并依據(jù)該條件,給出了一類2次多項(xiàng)式混沌系統(tǒng)及其概率密度函數(shù);進(jìn)一步得到了能夠?qū)⑦@類系統(tǒng)均勻化的變換函數(shù);給出了一個(gè)新的2次多項(xiàng)式混沌系統(tǒng)并進(jìn)行均勻化處理,對(duì)其產(chǎn)生的序列進(jìn)行了信息熵、Kolmogorov熵和離散熵分析,結(jié)果顯示該均勻化方法的均勻化效果顯著且不改變序列混沌程度。
-
關(guān)鍵詞:
- 混沌系統(tǒng) /
- 均勻化 /
- 拓?fù)涔曹?/a> /
- 熵
Abstract: A sufficient condition for general quadratic polynomial systems to be topologically conjugate with Tent map is proposed. Base on this condition, the probability density function of a class of quadratic polynomial systems is provided and transformations function which can homogenize this class of chaotic systems is further obtained. The performances of both the original system and the homogenized system are evaluated. Numerical simulations show that the information entropy of the uniformly distributed sequences is closer to the theoretical limit and its discrete entropy remains unchanged. In conclusion, with such homogenization method all the chaotic characteristics of the original system is inherited and better uniformity is performed.-
Key words:
- Chaotic system /
- Homogenization /
- Topologically conjugate /
- Entropy
-
表 1 幾個(gè)2次多項(xiàng)式混沌系統(tǒng)
混沌系統(tǒng)$f(x)$ 概率密度 均勻化系統(tǒng)$z(x)$ $f(x)$信息熵 $z(x)$信息熵 $f(x) = \frac{7}{2}{x^2} + \frac{{33}}{{10}}x - \frac{{53}}{{200}}$ $\frac{7}{{{\text{π}} \sqrt { - 49{x^2} + 46.2x + 5.11} }}$ $z(x) = \frac{1}{{\text{π}} }\arcsin \left( { - \frac{7}{4}x - \frac{{33}}{{40}}} \right)$ 8.6470 8.9651 $f(x) = \frac{5}{4}{x^2} - \frac{1}{2}x - \frac{{27}}{{20}}$ $\frac{5}{{{\text{π}} \sqrt { - 25{x^2} + 10x + 63} }}$ $z(x) = \frac{1}{{\text{π}} }\arcsin\left( { - \frac{5}{8}x + \frac{1}{8}} \right)$ 8.6380 8.9649 $f(x) = - \frac{5}{2}{x^2} + 3x + \frac{1}{2}$ $\frac{5}{{{\text{π}} \sqrt { - 25{x^2} + 30x + 7} }}$ $z(x) = \frac{1}{{\text{π}} }\arcsin\left( {\frac{5}{4}x - \frac{3}{4}} \right)$ 8.6412 8.9650 下載: 導(dǎo)出CSV
表 2 系統(tǒng)均勻化前后的信息熵與最大熵比較
$\left( {N,M} \right)$ 均勻化前
信息熵均勻化后
信息熵最大熵 (500000, 100) 6.3530 6.6437 6.6439 (500000, 300) 7.9137 8.2284 8.2288 (500000, 500) 8.6431 8.9651 8.9658 下載: 導(dǎo)出CSV
-
LI T Y and YORKE J A. Period three implies chaos[J]. American Mathematical Monthly, 1975, 82(10): 985–992. doi: 10.1007/978-0-387-21830-4_6 MANFREDI P, VANDE GINSTE D, STIEVANO I S, et al. Stochastic transmission line analysis via polynomial chaos methods: an overview[J]. IEEE Electromagnetic Compatibility Magazine, 2017, 6(3): 77–84. doi: 10.1109/memc.0.8093844 KUMAR S, STRACHAN J P, and WILLIAMS R S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing[J]. Nature, 2017, 548(7667): 318–321. doi: 10.1038/nature23307 廖曉峰, 肖迪, 陳勇, 等. 混沌密碼學(xué)原理及其應(yīng)用[M]. 北京: 科學(xué)出版社, 2009: 16–40.LIAO Xiaofeng, XIAO Di, CHEN Yong, et al. Theory and Applications of Chaotic Cryptography[M]. Beijing: Science Press, 2009: 16–40. KOCAREV L and TASEV Z. Public-key encryption based on Chebyshev maps[C]. Proceedings of the 2003 International Symposium on Circuits and Systems, Bangkok, Thailand, 2003: 28–31. ROBINSON R C. An Introduction to Dynamical Systems: Continuous and Discrete[M]. Providence, Rhode Island: American Mathematical Society, 2012: 24–50. FRANK J and GOTTWALD G A. A note on statistical consistency of numerical integrators for multiscale dynamics[J]. Multiscale Modeling & Simulation, 2018, 16(2): 1017–1033. doi: 10.1137/17M1154709 黃誠(chéng), 易本順. 基于拋物線映射的混沌LT編碼算法[J]. 電子與信息學(xué)報(bào), 2009, 31(10): 2527–2531.HUANG Cheng and YI Benshun. Chaotic LT encoding algorithm based on parabolic map[J]. Journal of Electronics &Information Technology, 2009, 31(10): 2527–2531. 曹光輝, 張興, 賈旭. 基于混沌理論運(yùn)行密鑰長(zhǎng)度可變的圖像加密[J]. 計(jì)算機(jī)工程與應(yīng)用, 2017, 53(13): 1–8. doi: 10.3778/j.issn.1002-8331.1703-0178CAO Guanghui, ZHANG Xing, and JIA Xu. Image encryption with variable-length running key based on chaotic theory[J]. Computer Engineering and Applications, 2017, 53(13): 1–8. doi: 10.3778/j.issn.1002-8331.1703-0178 KOCAREV L, SZCZEPANSKI J, AMIGO J M, et al. Discrete chaos-I: theory[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2006, 53(6): 1300–1309. doi: 10.1109/TCSI.2006.874181 AMIGó J M, KOCAREV L, and SZCZEPANSKI J. Theory and practice of chaotic cryptography[J]. Physics Letters A, 2007, 366(3): 211–216. doi: 10.1016/j.physleta.2007.02.021 AMIGó J M, KOCAREV L, and TOMOVSKI I. Discrete entropy[J]. Physica D: Nonlinear Phenomena, 2007, 228(1): 77–85. doi: 10.1016/j.physd.2007.03.001 臧鴻雁, 黃慧芳. 基于均勻化混沌系統(tǒng)生成S盒的算法研究[J]. 電子與信息學(xué)報(bào), 2017, 39(3): 575–581. doi: 10.11999/JEIT160535ZANG Hongyan and HUANG Huifang. Research on algorithm of generating S-box based on uniform chaotic system[J]. Journal of Electronics &Information Technology, 2017, 39(3): 575–581. doi: 10.11999/JEIT160535 周海玲, 宋恩彬. 二次多項(xiàng)式映射的3-周期點(diǎn)判定[J]. 四川大學(xué)學(xué)報(bào): 自然科學(xué)版, 2009, 46(3): 561–564.ZHOU Hailing and SONG Enbin. Discrimination of the 3-periodic points of a quadratic polynomial[J]. Journal of Sichuan University:Natural Science Edition, 2009, 46(3): 561–564. COLLET P and ECKMANN J P. Iterated Maps on the Interval as Dynamical Systems[M]. Boston: Birkh?user, 2009. 郝柏林. 從拋物線談起—混沌動(dòng)力學(xué)引論[M]. 北京: 北京大學(xué)出版社, 2013: 114–118.HAO Bolin. Starting with Parabola: An Introduction to Chaotic Dynamics[M]. Beijing: Peking University Press, 2013: 114–118. -