基于整數線性規(guī)劃重構抽象語義圖結構的語義摘要算法
doi: 10.11999/JEIT180720
-
國家數字交換系統(tǒng)工程技術研究中心 ??鄭州 ??450002
基金項目: 國家自然科學基金(61521003),國家自然科學基金青年科學基金(61601513)
Semantic Summarization of Reconstructed Abstract Meaning Representation Graph Structure Based on Integer Linear Pragramming
-
National Digital Switching System Engineering Technological Research Center, Zhengzhou 450002, China
Funds: The National Natural Science Foundation of China (61521003), The National Natural Science Foundation of China Youth Science Fund (61601513)
-
摘要: 針對利用抽象語義(AMR)圖來預測摘要子圖存在的語義結構不完整問題,該文提出一種基于整數線性規(guī)劃(ILP)重構AMR圖結構的語義摘要算法。首先將數據預處理生成一個AMR總圖;然后基于統(tǒng)計特征從AMR總圖中抽取出摘要子圖重要節(jié)點信息;最后利用ILP的方法來對摘要子圖中節(jié)點關系進行重構,利用完整的摘要子圖恢復生成語義摘要。實驗結果表明,相比其他語義摘要方法,所提方法的ROUGE值和Smatch值都有顯著提高,最多分別提高了9%和14%,該方法有利于提高語義摘要的質量。
-
關鍵詞:
- 抽象語義圖 /
- 語義摘要 /
- 摘要子圖 /
- 語義結構 /
- 整數線性規(guī)劃
Abstract: In order to solve the incomplete semantic structure problem that occurs in the process of using the Abstract Meaning Representation (AMR) graph to predict the summary subgraph, a semantic summarization algorithm is proposed based on Integer Linear Programming (ILP) reconstructed AMR graph structure. Firstly, the text data are preprocessed to generate an AMR total graph. Then the important node information of the summary subgraph is extracted from the AMR total graph based on the statistical features. Finally, the ILP method is applied to reconstructing the node relationships in the summary subgraph, which is further utilized to generate a semantic summarization. The experimental results show that compared with other semantic summarization methods, the ROUGE index and Smatch index of the proposed algorithm are significantly improved, up to 9% and 14% respectively. This method improves significantly the quality of semantic summarization. -
表 2 不同語義摘要算法的性能對比
算法 ROUGE-1 ROUGE-2 ROUGE-W Smatch 外部語義資源 20.4 5.6 14.3 17.8 語義聚類 21.2 6.0 15.2 19.1 潛在語義分析 22.8 6.8 14.9 20.5 TextRank算法 25.7 8.1 16.8 24.6 PAS語義圖 26.5 9.6 18.6 28.9 本文方法 29.3 10.4 19.6 32.1 下載: 導出CSV
表 3 使用ILP和未使用ILP摘要質量對比
ROUGE-1 ROUGE-2 ROUGE-W Smatch 未使用ILP 29.1 9.8 18.7 29.7 使用ILP 29.3 10.4 19.6 32.1 結果提升 0.2 0.6 0.9 2.4 下載: 導出CSV
-
LYNN H M, CHOI C, and KIM P. An improved method of automatic text summarization for web contents using lexical chain with semantic-related terms[J]. Soft Computing, 2018, 22(12): 4013–4023. doi: 10.1007/s00500-017-2612-9 SHETTY K and KALLIMANI J S. Automatic extractive text summarization using K-means clustering[C]. International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 2017: 1–9. YU Shanshan, SU Jindian, LI Pengfei, et al. Towards high performance text mining: A TextRank-based method for automatic text summarization[J]. International Journal of Grid and High Performance Computing (IJGHPC) , 2016, 8(2): 58–75. doi: 10.4018/IJGHPC.2016040104 NGUYEN-HOANG T A, NGUYEN K, and TRAN Q V. TSGVi: A graph-based summarization system for Vietnamese documents[J]. Journal of Ambient Intelligence and Humanized Computing, 2012, 3(4): 305–313. doi: 10.1007/s12652-012-0143-x KHAN A, SALIM N, FARMAN H, et al. Abstractive text summarization based on improved semantic graph approach[J]. International Journal of Parallel Programming, 2018: 1–25. doi: 10.1007/s10766-018-0560-3 BANARESU L, BONIAL C, CAI S, et al. Abstract meaning representation for sembanking[C]. Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, Sofia, Bulgaria, 2013: 178–186. LIU Fei, FLANIGAN J, THOMSON S, et al. Toward abstractive summarization using semantic representations[C]. Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, USA, 2015: 1077–1086. SONG Linfeng, PENG Xiaochang, ZHANG Yue, et al. AMR-to-text generation with synchronous node replacement grammar[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017: 7–13. KONSTAS I, IYER S, YATSKAR M, et al. Neural AMR: Sequence-to-sequence models for parsing and generation[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017: 146–157. 明拓思宇, 陳鴻昶, 黃瑞陽, 等. 一種基于加權AMR圖的語義子圖預測摘要算法[J]. 計算機工程, 2018, 44(10): 292–297. doi: 10.19678/j.issn.1000-3428.0050770MING Tuosiyu, CHEN Hongchang, HUANG Ruiyang, et al. A semantic subgraph predictive summary algorithm based on improved AMR graph[J]. Computer Engineering, 2018, 44(10): 292–297. doi: 10.19678/j.issn.1000-3428.0050770 COLLINS M. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms[C]. Proceedings of the ACL-02 conference on Empirical Methods in Natural Language Processing, Philadelphia, USA, 2002, 10: 1–8. HERMANN K M, KO?ISKY T, GREFENSTETTE E, et al. Teaching machines to read and comprehend[C]. Proceeding NIPS’15 Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015, 1: 1693–1701. LIN Chinyew. ROUGE: A package for automatic evaluation of summaries[C]. Text Summarization Branches Out: Proceedings of the ACL-04 Workshop, Barcelona, Spain, 2004, 10: 74–81. CAI Shu and KNIGHT K. Smatch: An evaluation metric for semantic feature structures[C]. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofia, Bulgaria, 2013, 2: 748–752. SEE A, LIU P J, and MANNING C D. Get to the point: Summarization with pointer-generator networks[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017, 1: 1073–1083. TAN Jiwei, WAN Xiaojun, and XIAO Jianguo. Abstractive document summarization with a graph-based attentional neural model[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017, 1: 1171–1181. -