一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于整數線性規(guī)劃重構抽象語義圖結構的語義摘要算法

陳鴻昶 明拓思宇 劉樹新 高超

陳鴻昶, 明拓思宇, 劉樹新, 高超. 基于整數線性規(guī)劃重構抽象語義圖結構的語義摘要算法[J]. 電子與信息學報, 2019, 41(7): 1674-1681. doi: 10.11999/JEIT180720
引用本文: 陳鴻昶, 明拓思宇, 劉樹新, 高超. 基于整數線性規(guī)劃重構抽象語義圖結構的語義摘要算法[J]. 電子與信息學報, 2019, 41(7): 1674-1681. doi: 10.11999/JEIT180720
Hongchang CHEN, Tuosiyu MING, Shuxin LIU, Chao GAO. Semantic Summarization of Reconstructed Abstract Meaning Representation Graph Structure Based on Integer Linear Pragramming[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1674-1681. doi: 10.11999/JEIT180720
Citation: Hongchang CHEN, Tuosiyu MING, Shuxin LIU, Chao GAO. Semantic Summarization of Reconstructed Abstract Meaning Representation Graph Structure Based on Integer Linear Pragramming[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1674-1681. doi: 10.11999/JEIT180720

基于整數線性規(guī)劃重構抽象語義圖結構的語義摘要算法

doi: 10.11999/JEIT180720
基金項目: 國家自然科學基金(61521003),國家自然科學基金青年科學基金(61601513)
詳細信息
    作者簡介:

    陳鴻昶:男,1964年生,教授,博士生導師,研究方向為通信與信息工程、網絡大數據

    明拓思宇:男,1994年生,碩士生,研究方向為網絡大數據、文本摘要

    劉樹新:男,1987年生,助理研究員,研究方向為網絡大數據、復雜網絡

    高超:男,1982年生,助理研究員,研究方向為網絡大數據、計算機視覺

    通訊作者:

    明拓思宇 1139446336@qq.com

  • 中圖分類號: TP391.1

Semantic Summarization of Reconstructed Abstract Meaning Representation Graph Structure Based on Integer Linear Pragramming

Funds: The National Natural Science Foundation of China (61521003), The National Natural Science Foundation of China Youth Science Fund (61601513)
  • 摘要: 針對利用抽象語義(AMR)圖來預測摘要子圖存在的語義結構不完整問題,該文提出一種基于整數線性規(guī)劃(ILP)重構AMR圖結構的語義摘要算法。首先將數據預處理生成一個AMR總圖;然后基于統(tǒng)計特征從AMR總圖中抽取出摘要子圖重要節(jié)點信息;最后利用ILP的方法來對摘要子圖中節(jié)點關系進行重構,利用完整的摘要子圖恢復生成語義摘要。實驗結果表明,相比其他語義摘要方法,所提方法的ROUGE值和Smatch值都有顯著提高,最多分別提高了9%和14%,該方法有利于提高語義摘要的質量。
  • 圖  1  算法框架圖

    圖  2  英文句“I saw Joe’s dog, which was running in the garden”的AMR圖表示

    圖  3  AMR圖合并生成AMR總圖示意圖

    圖  4  實驗結果AMR圖與標準摘要AMR圖的對比

    圖  5  L值對摘要質量各指標的影響

    表  1  摘要子圖節(jié)點和邊預測正確率(%)

    PRF1
    節(jié)點71.482.576.5
    45.660.151.9
    下載: 導出CSV

    表  2  不同語義摘要算法的性能對比

    算法ROUGE-1ROUGE-2ROUGE-WSmatch
    外部語義資源20.45.614.317.8
    語義聚類21.26.015.219.1
    潛在語義分析22.86.814.920.5
    TextRank算法25.78.116.824.6
    PAS語義圖26.59.618.628.9
    本文方法29.310.419.632.1
    下載: 導出CSV

    表  3  使用ILP和未使用ILP摘要質量對比

    ROUGE-1ROUGE-2ROUGE-WSmatch
    未使用ILP29.19.818.729.7
    使用ILP29.310.419.632.1
    結果提升0.20.60.92.4
    下載: 導出CSV

    表  4  與深度學習算法的性能對比

    方法ROUGE-1ROUGE-2ROUGE-WSmatch
    本文方法29.310.419.632.1
    深度學習33.413.624.826.7
    下載: 導出CSV
  • LYNN H M, CHOI C, and KIM P. An improved method of automatic text summarization for web contents using lexical chain with semantic-related terms[J]. Soft Computing, 2018, 22(12): 4013–4023. doi: 10.1007/s00500-017-2612-9
    SHETTY K and KALLIMANI J S. Automatic extractive text summarization using K-means clustering[C]. International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 2017: 1–9.
    YU Shanshan, SU Jindian, LI Pengfei, et al. Towards high performance text mining: A TextRank-based method for automatic text summarization[J]. International Journal of Grid and High Performance Computing (IJGHPC) , 2016, 8(2): 58–75. doi: 10.4018/IJGHPC.2016040104
    NGUYEN-HOANG T A, NGUYEN K, and TRAN Q V. TSGVi: A graph-based summarization system for Vietnamese documents[J]. Journal of Ambient Intelligence and Humanized Computing, 2012, 3(4): 305–313. doi: 10.1007/s12652-012-0143-x
    KHAN A, SALIM N, FARMAN H, et al. Abstractive text summarization based on improved semantic graph approach[J]. International Journal of Parallel Programming, 2018: 1–25. doi: 10.1007/s10766-018-0560-3
    BANARESU L, BONIAL C, CAI S, et al. Abstract meaning representation for sembanking[C]. Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, Sofia, Bulgaria, 2013: 178–186.
    LIU Fei, FLANIGAN J, THOMSON S, et al. Toward abstractive summarization using semantic representations[C]. Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, USA, 2015: 1077–1086.
    SONG Linfeng, PENG Xiaochang, ZHANG Yue, et al. AMR-to-text generation with synchronous node replacement grammar[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017: 7–13.
    KONSTAS I, IYER S, YATSKAR M, et al. Neural AMR: Sequence-to-sequence models for parsing and generation[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017: 146–157.
    明拓思宇, 陳鴻昶, 黃瑞陽, 等. 一種基于加權AMR圖的語義子圖預測摘要算法[J]. 計算機工程, 2018, 44(10): 292–297. doi: 10.19678/j.issn.1000-3428.0050770

    MING Tuosiyu, CHEN Hongchang, HUANG Ruiyang, et al. A semantic subgraph predictive summary algorithm based on improved AMR graph[J]. Computer Engineering, 2018, 44(10): 292–297. doi: 10.19678/j.issn.1000-3428.0050770
    COLLINS M. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms[C]. Proceedings of the ACL-02 conference on Empirical Methods in Natural Language Processing, Philadelphia, USA, 2002, 10: 1–8.
    HERMANN K M, KO?ISKY T, GREFENSTETTE E, et al. Teaching machines to read and comprehend[C]. Proceeding NIPS’15 Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015, 1: 1693–1701.
    LIN Chinyew. ROUGE: A package for automatic evaluation of summaries[C]. Text Summarization Branches Out: Proceedings of the ACL-04 Workshop, Barcelona, Spain, 2004, 10: 74–81.
    CAI Shu and KNIGHT K. Smatch: An evaluation metric for semantic feature structures[C]. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofia, Bulgaria, 2013, 2: 748–752.
    SEE A, LIU P J, and MANNING C D. Get to the point: Summarization with pointer-generator networks[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017, 1: 1073–1083.
    TAN Jiwei, WAN Xiaojun, and XIAO Jianguo. Abstractive document summarization with a graph-based attentional neural model[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, 2017, 1: 1171–1181.
  • 加載中
圖(5) / 表(4)
計量
  • 文章訪問數:  2505
  • HTML全文瀏覽量:  963
  • PDF下載量:  103
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-07-18
  • 修回日期:  2018-10-26
  • 網絡出版日期:  2018-11-19
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回