抑制脈沖型噪聲的限幅器自適應(yīng)設(shè)計
doi: 10.11999/JEIT180609
-
1.
重慶郵電大學(xué)通信與信息工程學(xué)院??重慶??400065
-
2.
武漢船舶通信研究所??武漢??430079
Adaptive Design of Limiters for Impulsive Noise Suppression
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Wuhan Maritime Communication Research Institute, Wuhan 430079, China
-
摘要:
針對脈沖型噪聲的抑制問題,該文提出一種自適應(yīng)的限幅器設(shè)計方法。該方法以效能函數(shù)為指標,采用自適應(yīng)搜索算法,自動尋找削波器和置零器的最佳門限,且能適用于未知噪聲分布的情形。首先分析了效能與非線性函數(shù)的關(guān)系,給出關(guān)鍵的優(yōu)化問題。然后考慮到效能函數(shù)計算復(fù)雜,提出基于線搜索的自適應(yīng)設(shè)計算法。其次針對未知分布情況,考慮非參數(shù)化的概率密度估計,該算法能夠穩(wěn)健運行且基本取得最優(yōu)設(shè)計效果。最后,結(jié)合兩種非高斯噪聲和實測大氣噪聲數(shù)據(jù)仿真,結(jié)果表明:該文方法可自適應(yīng)尋找最佳門限,使削波器和置零器效能達到最佳;當噪聲分布未知時,該文方法無需假設(shè)噪聲模型,可與非參數(shù)化概率密度估計方法結(jié)合,取得最優(yōu)檢測效果。
-
關(guān)鍵詞:
- 非線性處理 /
- 效能函數(shù) /
- 自適應(yīng)優(yōu)化 /
- 削波器 /
- 置零器
Abstract:An adaptive method of limiter design is proposed to suppress impulsive noise. With a purpose of maximizing the efficacy function, the proposed method searches for optimal thresholds of clipper and blanker, via adaptive line search. Firstly, based on analysis on the relationship between the efficacy and the nonlinearity, the key problem of optimization is proposed. Then, since the calculation of efficacy is hard, an adaptive algorithm based on linear search approach is developed based on linear search to optimize the efficacy. Considering the noise distribution is unknown, the proposed method employs the nonparametric kernel density estimation and works robustly in the presence of estimation error. Finally, numeric simulations demonstrate that the proposed method can obtain the optimal performance of clippers and blankers successfully. In the processing of real atmospheric noise from unknown distribution, the proposed method achieves the best detection performance when combining nonparametric kernel density estimation approach.
-
Key words:
- Nonlinear processing /
- Efficiency function /
- Adaptive optimization /
- Clipper /
- Blanker
-
表 1 限幅器的自適應(yīng)優(yōu)化處理算法
步驟 1 設(shè)置初始值${\tau _0} > 0$,初始步長${d_0} = 0.5{\tau _0}$,迭代次數(shù)
$k = 0$,計算效能值${\eta _0} = \eta (g, f, {\tau _0})$;步驟 2 令${\tau _{k + 1}} = {\tau _k} + {d_k}$,并計算效能值${\eta _{k{\rm{ + 1}}}} = \eta (g, f, {\tau _{k + 1}})$。若
${\eta _{k{\rm{ + 1}}}} > {\eta _k}$,轉(zhuǎn)步驟3;否則,轉(zhuǎn)步驟4;步驟 3 正向搜索。令${d_{k + 1}} = 2{d_k}$, $\tau = {\tau _k}$, ${\tau _k} = {\tau _{k + 1}}$, ${\eta _k} = {\eta _{k{\rm{ + 1}}}}$,
$k = k + 1$,轉(zhuǎn)步驟2;步驟 4 反向搜索。若$k = 0$,則令${d_1} = - {d_0}$, $\tau = {\tau _1}$, ${\tau _1} = {\tau _0}$,
${\eta _1} = {\eta _0}$, $k = 1$,轉(zhuǎn)步驟2;否則,停止迭代;步驟 5 設(shè)置線搜索參數(shù),容許誤差比率$\lambda $。迭代次數(shù)j=0;令
${l_0} = {\rm{min}}\{ \tau, {\tau _{k + 1}}\} $, ${r_0} = {\rm{max}}\{ \tau, {\tau _{k + 1}}\} $, ${p_0} = {l_0} $
$ 0.382\left( {{r_0} - {l_0}} \right)$, ${q_0} = {l_0} + 0.618\left( {{r_0} - {l_0}} \right)$;步驟 6 條件判斷。若$\eta (g, f, {p_j}) \ge \eta (g, f, {q_j})$,轉(zhuǎn)步驟7,否則轉(zhuǎn)
步驟8;步驟 7 計算左試探點。若$|{q_j} - {l_j}|/{r_j} > \lambda $,則令${l_{j + 1}} = {l_j}$, ${r_{j + 1}} $
$ ={q_j}$, $\eta (g, f, {q_{j + 1}}) = \eta (g, f, {p_j})$, ${q_{j + 1}} = {p_j}$, ${p_{j + 1}} = $
$ {l_{j + 1}} + 0.382({r_{j + 1}} - {l_{j + 1}})$,計算效能值$\eta (g, f, {p_{j + 1}})$,
$j = j + 1$,轉(zhuǎn)步驟6;否則,停止搜索并
輸出最佳門限值${p_j}$;步驟 8 計算右試探點。若$|{r_j} - {p_j}{\rm{|/}}{r_j} > \lambda $,則令${l_{j + 1}} = {p_j}$, ${r_{j + 1}} $
$={r_j}$, $\eta (g, f, {p_{j + 1}}) = \eta (g, f, {q_j})$, ${p_{j + 1}} = {q_j}$, ${q_{j + 1}} =$
$ {l_{j + 1}} + 0.618({r_{j + 1}} - {l_{j + 1}})$,計算效能值$\eta (g, f, {q_{j + 1}})$,
$j = j + 1$,轉(zhuǎn)步驟6;否則,停止搜索并輸
出最佳門限值${q_j}$。下載: 導(dǎo)出CSV
表 2 Class A分布下(
${A}{,} {Γ} $ )-${τ} $ 變化,${{σ}^2}$ =1$A, {\rm{ }}\varGamma $ $0.1, {\rm{ }}{10^{ - 3}}$ $0.35, {\rm{ }}{10^{ - 3}}$ $0.5, {\rm{ }}{10^{ - 3}}$ $0.1, {\rm{ }}{10^{ - 2}}$ $0.35, {\rm{ }}{10^{ - 2}}$ $0.5, {\rm{ }}{10^{ - 2}}$ ${\tau _{{\rm{opt\_}}b}}{\rm{ - PDF}}$(${\eta _{{\rm{opt\_}}b}}$) 0.1296(888.8429) 0.1094(647.4406) 0.0996(532.3140) 0.3397(87.5188) 0.2898(59.1912) 0.2698(46.5176) ${\tau _{{\rm{opt\_}}c}}{\rm{ - PDF}}$(${\eta _{{\rm{opt\_}}c}}$) 0.0386(671.5877) 0.0232(356.9533) 0.0188(257.2668) 0.1181(69.5440) 0.0743(38.4601) 0.0623(28.4378) ${\tau _{{\rm{opt\_}}b}}{\rm{ - KDE}}$(${\eta _{{\rm{opt\_}}b}}$) 0.1199(877.9385) 0.1094(631.7642) 0.0994(510.9088) 0.3494(85.5270) 0.2937(57.2562) 0.2708(43.9273) ${\tau _{{\rm{opt\_}}c}}{\rm{ - KDE}}$(${\eta _{{\rm{opt\_}}c}}$) 0.0396(665.3161) 0.0239(349.5658) 0.0197(247.0483) 0.1197(68.3936) 0.0786(36.7663) 0.0651(26.4190) 下載: 導(dǎo)出CSV
表 3
$\rm S{α} S$ 分布下限幅器自適應(yīng)設(shè)計方法迭代次數(shù)$\alpha $ 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Iterb-PDF 15 15 15 15 15 15 15 15 15 Iterc-PDF 17 17 17 16 16 16 16 15 15 Iterb-KDE 15 15 15 15 15 15 15 15 14 Iterc-KDE 17 17 17 16 16 16 16 15 15 下載: 導(dǎo)出CSV
-
KAY S M. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory[M]. Englewood Cliffs, USA: Prentice-Hall, Inc., 1993: 94–115. DAVIS R R and CLAVIER O. Impulsive noise: A brief review[J]. Elsevier Hearing Research, 2017, 349: 34–36. doi: 10.1016/j.heares.2016.10.020 LI Xutao, SUN Jun, WANG Shouyong, et al. Near-optimal detection with constant false alarm ratio in varying impulsive interference[J]. IET Signal Processing, 2013, 7(9): 824–832. doi: 10.1049/iet-spr.2013.0024 MILLER J and THOMAS J. Detectors for discrete-time signals in non-Gaussian noise[J]. IEEE Transactions on Information Theory, 1972, 18(2): 241–250. doi: 10.1109/TIT.1972.1054787 VADALI S R K, RAY P, MULA S, et al. Linear detection of a weak signal in additive Cauchy noise[J]. IEEE Transactions on Communications, 2017, 65(3): 1061–1076. doi: 10.1109/TCOMM.2016.2647599 WANG Pingbo, LIU Feng, CAI Zhiming, et al. G-Filter's Gaussianization function for interference background[C]. International Conference on Signal Acquisition and Processing, Nanjing, China, 2010: 76–79. 羅忠濤, 盧鵬, 張楊勇, 等. 基于高斯化-廣義匹配的脈沖型噪聲處理方法研究[J]. 電子與信息學(xué)報, 2018, 40(12): 2928–2935. doi: 10.11999/JEIT180191LUO Zhongtao, LU Peng, ZHANG Yangyong, et al. A novel method for nonlinear processing in impulsive noise based on gaussianization and generalized matching[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2928–2935. doi: 10.11999/JEIT180191 OH H and NAM H. Design and performance analysis of nonlinearity preprocessors in an impulsive noise environment[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 364–376. doi: 10.1109/TVT.2016.2547889 OH H, NAM H, and PARK S. Adaptive threshold blanker in an impulsive noise environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(5): 1045–1052. doi: 10.1109/TEMC.2014.2311853 KOLODZIEJSKI K R and BETZ J W. Detection of weak random signals in IID non-Gaussian noise[J]. IEEE Transactions on Communications, 2000, 48(2): 222–230. doi: 10.1109/26.823555.doi:10.1109/26.823555 ZHANG Guoyong, WANG Jun, YANG Guosheng, et al. Nonlinear processing for correlation detection in symmetric alpha-stable noise[J]. IEEE Signal Processing Letters, 2018, 25(1): 120–124. doi: 10.1109/LSP.2017.2776317 張楊勇, 劉勇. 低頻段大氣噪聲及處理技術(shù)[J]. 艦船科學(xué)技術(shù), 2008, 30(S1): 85–88. doi: 10.3404/j.issn.1672-7649.2008.S021ZHANG Yangyong and LIU Yong. Atmospheric-noise at low frequency and its processing technique[J]. Ship Science &Technology, 2008, 30(S1): 85–88. doi: 10.3404/j.issn.1672-7649.2008.S021 MODESTINO J W and NINGO A Y. Detection of weak signals in narrowband non-Gaussian noise[J]. IEEE Transactions on Information Theory, 1979, 25(5): 592–600. doi: 10.1109/TIT.1979.1056086 KURUOGLU E E, FITZGERALD W J, and RAYNER P J W. Near optimal detection of signals in impulsive noise modeled with a symmetric alpha-stable distribution[J]. IEEE Communications Letters, 1998, 2(10): 282–284. doi: 10.1109/4234.725224 VASTOLA K. Threshold detection in narrow-band non-Gaussian noise[J]. IEEE Transactions on Communications, 1984, 32(2): 134–139. doi: 10.1109/TCOM.1984.1096037 CHONG E K D and ZAK S H. An Introduction to Optimization[M]. Hoboken, New Jersey: John Wiley & Sons, 2014: 105–108. NOCEDAL J and WRIGHT S J. Numerical Optimization[M]. New York NY, US: Springer-Verlag Inc., 1999: 35–62. SCALES L E. Introduction to Non-Linear Optimization[M]. London, UK: Macmillan Publishers, 1985: 31–34. SAMIUDDIN M and EL-SAYYAD G M. On nonparametric kernel density estimates[J]. Biometrika, 1990, 77(4): 865–874. doi: 10.1093/77.4.865 SILVERMAN B W. Density Estimation for Statistics and Data Analysis[M]. London, UK: Chapman & Hall, 1986: 45–48. HE Jiai, DU Panpan, and CHEN Xing. Parameter estimation of communication signal in alpha-stable distribution noise environment[C]. Computational Intelligence and Security, Hong Kong, China, 2017: 15–18. BIBALAN M H, AMINDAVAR H, and AMIRMAZLAGHANI M. Characteristic function based parameter estimation of skewed alpha-stable distribution: An analytical approach[J]. Elsevier Signal Processing, 2017, 130: 323–336. doi: 10.1016/j.sigpro.2016.07.020 MIDDLETON D. Procedures for determining the parameters of the first-order canonical models of Class A and Class B electromagnetic interference[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 21(3): 190–208. doi: 10.1109/TEMC.1979.303731 AXELL E, ELIARDSSON P, TENGSTRAND S, et al. Power control in interference channels with Class A impulse noise[J]. IEEE Wireless Communications Letters, 2017, 6(1): 102–105. doi: 10.1109/LWC.2016.2634529 -