一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

簇間可分的魯棒模糊C均值聚類算法

高云龍 楊程宇 王志豪 羅斯哲 潘金艷

高云龍, 楊程宇, 王志豪, 羅斯哲, 潘金艷. 簇間可分的魯棒模糊C均值聚類算法[J]. 電子與信息學(xué)報, 2019, 41(5): 1114-1121. doi: 10.11999/JEIT180604
引用本文: 高云龍, 楊程宇, 王志豪, 羅斯哲, 潘金艷. 簇間可分的魯棒模糊C均值聚類算法[J]. 電子與信息學(xué)報, 2019, 41(5): 1114-1121. doi: 10.11999/JEIT180604
Yunlong GAO, Chengyu YANG, Zhihao WANG, Sizhe LUO, Jinyan PAN. Robust Fuzzy C-means Clustering Algorithm Integrating Between-cluster Information[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1114-1121. doi: 10.11999/JEIT180604
Citation: Yunlong GAO, Chengyu YANG, Zhihao WANG, Sizhe LUO, Jinyan PAN. Robust Fuzzy C-means Clustering Algorithm Integrating Between-cluster Information[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1114-1121. doi: 10.11999/JEIT180604

簇間可分的魯棒模糊C均值聚類算法

doi: 10.11999/JEIT180604
基金項目: 國家自然科學(xué)基金(61203176),福建省自然科學(xué)基金(2013J05098, 2016J01756)
詳細信息
    作者簡介:

    高云龍:男,1979年生,副教授,研究方向為機器學(xué)習(xí)、時間序列分析和生產(chǎn)制造系統(tǒng)優(yōu)化與調(diào)度

    楊程宇:男,1996年生,本科生,研究方向為機器學(xué)習(xí)

    王志豪:男,1993年生,碩士生,研究方向為模式識別和機器學(xué)習(xí)

    羅斯哲:男,1995年生,碩士生,研究方向為維數(shù)約簡、模式識別和機器學(xué)習(xí)

    潘金艷:女,1978年生,副教授,研究方向為人工智能和機器學(xué)習(xí)理論與方法

    通訊作者:

    潘金艷 gaoyl@xmu.edu.cn

  • 中圖分類號: TP311.13

Robust Fuzzy C-means Clustering Algorithm Integrating Between-cluster Information

Funds: The National Natural Science Foundation of China (61203176), The Natural Science Foundation of Fujian Province (2013J05098, 2016J01756)
  • 摘要:

    與經(jīng)典的K均值聚類算法相比,模糊C均值(FCM)聚類算法通過引入模糊因子,考慮不同聚類數(shù)據(jù)簇之間的相互關(guān)系,得到可分性更好的聚類結(jié)果。但是模糊因子的引入,使得任意一個樣本點都存在模糊性,造成FCM極易受到噪聲和離群點的影響,聚類結(jié)果泛化性能較差。因此,該文提出一種簇間可分的魯棒FCM算法(RBI-FCM)。RBI-FCM利用K均值算法對模糊隸屬度的稀疏特征,降低不同數(shù)據(jù)簇之間的相互作用,突出不同數(shù)據(jù)簇相鄰區(qū)域的可分性;另外,RBI-FCM在極小化數(shù)據(jù)簇內(nèi)部散布度的條件下,考慮不同數(shù)據(jù)簇之間的可分性,可提高聚類模型的泛化性能。該文設(shè)計了有效的模型求解迭代算法。實驗結(jié)果表明,RBI-FCM算法提高了FCM的魯棒性,有效降低FCM對數(shù)據(jù)簇分布差異性和抽樣不均衡的敏感性,得到理想的聚類結(jié)果。

  • 圖  1  聚類結(jié)果最大隸屬度值曲線分布情況

    圖  2  人造樣本疏密分布數(shù)據(jù)集

    圖  3  聚類結(jié)果正確率曲線

    圖  4  人造樣本容量分布不均數(shù)據(jù)集

    圖  5  聚類結(jié)果正確率曲線

    圖  6  人造非球形樣本數(shù)據(jù)集及聚類結(jié)果

    表  1  實驗1:人造樣本數(shù)據(jù)集主要參數(shù)

    樣本集類中心協(xié)方差矩陣各類樣本數(shù)
    1(5, 5), (15, 15)[1 0; 0 1], [1 0; 0 1]50, 50
    2(5, 5), (15, 15)[1 0; 0 1], [2 0; 0 2]50, 50
    $\vdots $$\vdots $$\vdots $$\vdots $
    10(5, 5), (15, 15)[1 0; 0 1], [10 0; 0 10]50, 50
    下載: 導(dǎo)出CSV

    表  2  實驗2:人造樣本數(shù)據(jù)集主要參數(shù)

    樣本集樣本隨機分布的圓心各類樣本數(shù)
    1(5, 5), (15, 15)50, 50
    2(5, 5), (15, 15)50, 51
    $\vdots $$\vdots $  $\vdots $$\vdots $
    151(5, 5), (15, 15)50, 200
    下載: 導(dǎo)出CSV

    表  3  UCI數(shù)據(jù)集聚類實驗的NMI正確率和RI正確率

    UCI數(shù)據(jù)集FCMPFCMGIFP-FCMRBI-FCMUCI數(shù)據(jù)集FCMPFCMGIFP-FCMRBI-FCM
    Auto-mgp0.51900.51670.50080.5443Wine0.41690.41680.39460.4911
    0.75340.75370.75050.78950.71040.71050.67000.7287
    Zoo0.67600.68240.62840.6873Balance Scale0.12230.12320.12930.1326
    0.83810.84000.82360.84640.58870.59000.58060.5947
    Parkinsons0.09260.09360.05260.1071House Votes0.47430.47430.29170.4948
    0.59340.59340.56930.62660.77520.77520.66880.7890
    Credit Approval0.03040.03040.03650.1020Vowel0.30190.31270.33570.3737
    0.50480.50480.52070.54480.77550.79880.82750.8153
    Banknote Authentication0.02920.02920.11450.5249Mammographic Masses0.10540.10650.10200.1130
    0.52360.52360.55550.80530.56760.56830.55240.5746
    注:每個數(shù)據(jù)集實驗結(jié)果的第1行為NMI正確率,第2行為RI正確率
    下載: 導(dǎo)出CSV
  • 陳新泉, 周靈晶, 劉耀中. 聚類算法研究綜述[J]. 集成技術(shù), 2017, 6(3): 41–49. doi: 10.3969/j.issn.2095-3135.2017.03.004

    CHEN Xinquan, ZHOU Lingjing, and LIU Yaozhong. Review on clustering algorithms[J]. Journal of Integrati on Technology, 2017, 6(3): 41–49. doi: 10.3969/j.issn.2095-3135.2017.03.004
    張傳錦, 李璐璐. 基于模糊C均值聚類的無線傳感器網(wǎng)絡(luò)節(jié)點定位算法[J]. 電子設(shè)計工程, 2016, 24(8): 58–60. doi: 10.14022/j.cnki.dzsjgc.2016.08.017

    ZHANG Chuanjin and LI Lulu. Improving multilateration algorithm based on fuzzy C-means cluster in WSN[J]. Electronic Design Engineering, 2016, 24(8): 58–60. doi: 10.14022/j.cnki.dzsjgc.2016.08.017
    池桂英, 王忠華. 基于分層的直覺模糊C均值聚類圖像分割算法[J]. 計算機工程與設(shè)計, 2017(12): 3368–3373. doi: 10.16208/j.issn1000-7024.2017.12.031

    CHI Guiying and WANG Zhonghua. Intuitionistic fuzzy C-means clustering algorithm based on hierarchy for image segmentation[J]. Computer Engineering and Design, 2017(12): 3368–3373. doi: 10.16208/j.issn1000-7024.2017.12.031
    黃艷國, 羅云鵬. 基于改進模糊C均值聚類算法的城市道路狀態(tài)判別方法[J]. 科學(xué)技術(shù)與工程, 2018, 18(9): 335–342. doi: 10.3969/j.issn.1671-1815.2018.09.052

    HUANG Yanguo and LUO Yunpeng. Identification method of urban road condition based on improved fuzzy C-means method clustering algorithm[J]. Science Technology and Engineering, 2018, 18(9): 335–342. doi: 10.3969/j.issn.1671-1815.2018.09.052
    趙泉華, 劉曉燕, 趙雪梅, 等. 基于可變類FCM算法的多光譜遙感影像分割[J]. 電子與信息學(xué)報, 2018, 40(1): 157–165. doi: 10.11999/JEIT170397

    ZHAO Quanhua, LIU Xiaoyan, ZHAO Xuemei, et al. Multispectral remote sensing image segmentation based on FCM algorithm with unknown number of clusters[J]. Journal of Electronics &Information Technology, 2018, 40(1): 157–165. doi: 10.11999/JEIT170397
    XU Rui and WUNSCH D. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3): 645–678. doi: 10.1109/tnn.2005.845141
    陳海鵬, 申鉉京, 龍建武, 等. 自動確定聚類個數(shù)的模糊聚類算法[J]. 電子學(xué)報, 2017, 45(3): 687–694. doi: 10.3969/j.issn.0372-2112.2017.03.028

    CHEN Haipeng, SHEN Xuanjing, LONG Jianwu, et al. Fuzzy clustering algorithm for automatic identification of clusters[J]. Acta Electronica Sinica, 2017, 45(3): 687–694. doi: 10.3969/j.issn.0372-2112.2017.03.028
    YANG MiinShen and NATALIANI Y. Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters[J]. Pattern Recognition, 2017, 71: 45–59. doi: 10.1109/nafips.2010.5548175
    PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy C-means clustering algorithm[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4): 517–530. doi: 10.1109/tfuzz.2004.840099
    肖滿生, 肖哲, 文志誠, 等. 一種空間相關(guān)性與隸屬度平滑的FCM改進算法[J]. 電子與信息學(xué)報, 2017, 39(5): 1123–1129. doi: 10.11999/JEIT160710

    XIAO Mansheng, XIAO Zhe, WEN Zhicheng, et al. Improved FCM clustering algorithm based on spatial correlation and membership smoothing[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1123–1129. doi: 10.11999/JEIT160710
    LIU Yun, HOU Tao, and LIU Fu. Improving fuzzy c-means method for unbalanced dataset[J]. Electronics Letters, 2015, 51(23): 1880–1882. doi: 10.1049/el.2015.1541
    史慧峰, 馬曉寧. 一種自適應(yīng)的模糊C均值聚類算法[J]. 無線通信技術(shù), 2016, 25(3): 40–45. doi: 10.3969/j.issn.1003-8329.2016.03.009

    SHI Huifeng and MA Xiaoning. An adaptive fuzzy C-means clustering algorithm[J]. Wireless Communication Technology, 2016, 25(3): 40–45. doi: 10.3969/j.issn.1003-8329.2016.03.009
    曲福恒. 模糊聚類算法及應(yīng)用[M]. 北京: 國防工業(yè)出版社, 2011.

    QU Fuheng. Fuzzy clustering algorithm and its application[M]. Beijing, National Defense Industry Press, 2011.
    DUNN J C. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 1974, 3(3): 32–57. doi: 10.1080/01969727308546046
    BEZDEK J C. Pattern Recognition with Fuzzy Objective Function Algorithms[J]. Springer US, 1981. doi: 10.1007/978-1-4757-0450-1
    ZHU Lin, CHUNG FuLai, and WANG Shitong. Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions[J]. IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A, 2009, 39(3): 578–591. doi: 10.3724/sp.j.1087.2013.02355
    H?PPNER F and KLAWONN F. Improved fuzzy partitions for fuzzy regression models[J]. International Journal of Approximate Reasoning, 2003, 32(2): 85–102. doi: 10.1016/s0888-613x(02)00078-6
    DENG Zhaohong, CHOI K S, CHUNG Fulai, et al. Enhanced soft subspace clustering integrating within-cluster and between-cluster information[J]. Pattern Recognition, 2010, 43(3): 767–781. doi: 10.1016/j.patcog.2009.09.010
  • 加載中
圖(6) / 表(3)
計量
  • 文章訪問數(shù):  2304
  • HTML全文瀏覽量:  928
  • PDF下載量:  91
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-06-20
  • 修回日期:  2018-12-24
  • 網(wǎng)絡(luò)出版日期:  2018-12-28
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回