一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

超密集網(wǎng)絡(luò)中基于移動(dòng)邊緣計(jì)算的任務(wù)卸載和資源優(yōu)化

張海波 李虎 陳善學(xué) 賀曉帆

張海波, 李虎, 陳善學(xué), 賀曉帆. 超密集網(wǎng)絡(luò)中基于移動(dòng)邊緣計(jì)算的任務(wù)卸載和資源優(yōu)化[J]. 電子與信息學(xué)報(bào), 2019, 41(5): 1194-1201. doi: 10.11999/JEIT180592
引用本文: 張海波, 李虎, 陳善學(xué), 賀曉帆. 超密集網(wǎng)絡(luò)中基于移動(dòng)邊緣計(jì)算的任務(wù)卸載和資源優(yōu)化[J]. 電子與信息學(xué)報(bào), 2019, 41(5): 1194-1201. doi: 10.11999/JEIT180592
Haibo ZHANG, Hu LI, Shanxue CHEN, Xiaofan HE. Computing Offloading and Resource Optimization in Ultra-dense Networks with Mobile Edge Computation[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1194-1201. doi: 10.11999/JEIT180592
Citation: Haibo ZHANG, Hu LI, Shanxue CHEN, Xiaofan HE. Computing Offloading and Resource Optimization in Ultra-dense Networks with Mobile Edge Computation[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1194-1201. doi: 10.11999/JEIT180592

超密集網(wǎng)絡(luò)中基于移動(dòng)邊緣計(jì)算的任務(wù)卸載和資源優(yōu)化

doi: 10.11999/JEIT180592
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61771084, 61601071),長(zhǎng)江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃基金(IRT16R72),重慶市基礎(chǔ)研究與前沿探索項(xiàng)目(cstc2018jcyjAX0463)
詳細(xì)信息
    作者簡(jiǎn)介:

    張海波:男,1979年生,副教授,研究方向?yàn)闊o線資源管理

    李虎:男,1992年生,碩士生,研究方向?yàn)橐苿?dòng)邊緣計(jì)算、無線資源管理

    陳善學(xué):男,1966年生,教授,研究方向?yàn)閳D像處理、數(shù)據(jù)壓縮

    賀曉帆:男,1985年生,助理教授,研究方向?yàn)闊o線資源優(yōu)化

    通訊作者:

    李虎 976502889@qq.com

  • 中圖分類號(hào): TN929.5

Computing Offloading and Resource Optimization in Ultra-dense Networks with Mobile Edge Computation

Funds: The National Natural Science Foundation of China (61771084, 61601071), The Foundation for Changjiang Scholars and Innovative Research Team in University (IRT16R72), The Basic Research and Frontier Exploration Projects in Chongqing (cstc2018jcyjAX0463)
  • 摘要:

    移動(dòng)邊緣計(jì)算(MEC)通過在無線網(wǎng)絡(luò)邊緣為用戶提供計(jì)算能力,來提高用戶的體驗(yàn)質(zhì)量。然而,MEC的計(jì)算卸載仍面臨著許多問題。該文針對(duì)超密集組網(wǎng)(UDN)的MEC場(chǎng)景下的計(jì)算卸載,考慮系統(tǒng)總能耗,提出卸載決策和資源分配的聯(lián)合優(yōu)化問題。首先采用坐標(biāo)下降法制定了卸載決定的優(yōu)化方案。同時(shí),在滿足用戶時(shí)延約束下采用基于改進(jìn)的匈牙利算法和貪婪算法來進(jìn)行子信道分配。然后,將能耗最小化問題轉(zhuǎn)化為功率最小化問題,并將其轉(zhuǎn)化為一個(gè)凸優(yōu)化問題得到用戶最優(yōu)的發(fā)送功率。仿真結(jié)果表明,所提出的卸載方案可以在滿足用戶不同時(shí)延的要求下最小化系統(tǒng)能耗,有效地提升了系統(tǒng)性能。

  • 圖  1  系統(tǒng)模型

    圖  2  不同時(shí)延約束范圍下卸載用戶的比例

    圖  3  不同時(shí)延約束范圍下的系統(tǒng)總能耗

    圖  4  系統(tǒng)的能耗與時(shí)延約束

    圖  5  系統(tǒng)的能耗與輸入數(shù)據(jù)大小

    圖  6  系統(tǒng)的能耗與用戶數(shù)目

    表  1  任務(wù)卸載和資源分配算法

    輸入:用戶數(shù)$N$,${t_n} = {\rm{(}}{w_n},{d_n}{\rm{,}}T_n^{\ {\rm{max}}}{\rm{)}}$,${f^c}$,初始卸載決定${{{A}}^0}$。
    初始化:$l \leftarrow 0$,
    Repeat
     $l \leftarrow l + 1$
     for $n = 1{\rm{ : }}N$
      根據(jù)式(13)得到${{{A}}^{l - 1}}{\rm{(}}n{\rm{)}}$;
      采用改進(jìn)的匈牙利算法和貪婪算法得到子信道分配矩陣${{{C}}_{{N_c} \times K}}$;
      根據(jù)凸優(yōu)化問題P3采用內(nèi)點(diǎn)法求解得到每個(gè)子信道上最優(yōu)的發(fā)
    送功率$p_n^k$;
      根據(jù)式(12)計(jì)算$Q_n^l$;
     end
     $q_l^* \leftarrow {\rm{ma}}{{\rm{x}}_{n = 1, \cdots ,N}}Q_n^l$和$n_l^* \leftarrow {\rm{arg ma}}{{\rm{x}}_{n = 1, \cdots ,N}}Q_n^l$;
     更新${{{A}}^l} \leftarrow {{{A}}^{l - 1}}\left( {n_l^*} \right)$;
    Until $q_l^* \le 0$;
    輸出:卸載決定矩陣${{{A}}^{\rm{*}}}$,信道分配矩陣${{C}}_{{N_c} \times K}^{\rm{*}}$,功率分配矩陣${{{P}}^{\rm{*}}}$。
    下載: 導(dǎo)出CSV

    表  2  仿真參數(shù)

    參數(shù)取值
    子信道帶寬$B$0.2 MHz
    子信道個(gè)數(shù)20
    用戶最大發(fā)送功率${P_{\max }}$23 dBm
    空閑時(shí)電路功率消耗${P^i}$10 mW
    背景噪聲功率${\omega _0}$–100 dBm
    用戶的計(jì)算能力$f_n^l$0.1~1 GHz/周期
    計(jì)算任務(wù)的大小${d_n}$400~1200 kB
    需要的CPU周期${w_n}$0.2~1 GHz
    用戶容忍最大時(shí)延$T_n^{\ \max }$1~4 s
    MEC的計(jì)算能力${f^c}$4 GHz/周期
    下載: 導(dǎo)出CSV
  • WANG Shiqiang, ZAFER M, and LEUNG K K. Online placement of multi-component applications in edge computing environments[J]. IEEE Access, 2017(5): 2514–2533. doi: 10.1109/ACCESS.2017.2665971
    MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: the communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    PAN Jianli and MCELHANNON J. Future edge cloud and edge computing for internet of things applications[J]. IEEE Internet of Things Journal, 2018, 5(1): 439–449. doi: 10.1109/JIOT.2017.2767608
    YANG Bin, MAO Guoqiang, DING Ming, et al. Dense small cell networks: from noise-limited to dense interference-limited[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4262–4277. doi: 10.1109/TVT.2018.2794452
    GE Xiaohu, TU Song, MAO Guoqiang, et al. 5G ultra-dense cellular networks[J]. IEEE Wireless Communications, 2016, 23(1): 72–79. doi: 10.1109/MWC.2016.7422408
    YANG Lichao, ZHANG Heli, LI Ming, et al. Mobile edge computing empowered energy efficient task offloading in 5G[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 6398–6409. doi: 10.1109/TVT.2018.2799620
    ZHANG Jiao, HU Xiping, NING Zhaolong, et al. Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks[J]. IEEE Internet of Things Journal, 2018, 5(4): 2633–2645. doi: 10.1109/JIOT.2017.2786343
    LIU Jianhui and ZHANG Qi. Offloading schemes in mobile edge computing for ultra-reliable low latency communications[J]. IEEE Access, 2018, 6: 12825–12837. doi: 10.1109/ACCESS.2018.2800032
    MAO Yuyi, ZHANG Jun, SONG S H, et al. Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(9): 5994–6009. doi: 10.1109/TWC.2017.2717986
    TI N T and LE Longbao. Computation offloading leveraging computing resources from edge cloud and mobile peers[C]. Proceedings of 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6.
    ZHAO Pengtao, TIAN Hui, QIN Cheng, et al. Energy-saving offloading by jointly allocating radio and computational resources for mobile edge computing[J]. IEEE Access, 2017(5): 11255–11268. doi: 10.1109/ACCESS.2017.2710056
    ZHANG Jing, XIA Weiwei, YAN Feng, et al. Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing[J]. IEEE Access, 2018, 6: 19324–19337. doi: 10.1109/ACCESS.2018.2819690
    GUO Jun, ZHANG Heli, YANG Lichao, et al. Decentralized computation offloading in mobile edge computing empowered small-cell networks[C]. Proceedings of 2017 IEEE Globecom Workshops, Singapore, Singapore, 2017: 1–6.
    RANADHEERA S, MAGHSUDI S, and HOSSAIN E. Computation offloading and activation of mobile edge computing servers: a minority game[J]. IEEE Wireless Communications Letters, 2018, 7(5): 688–691. doi: 10.1109/LWC.2018.2810292
    WANG Chenmeng, YU F R, LIANG Chengchao, et al. Joint computation offloading and interference management in wireless cellular networks with mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7432–7445. doi: 10.1109/TVT.2017.2672701
    DINH T Q, TANG Jianhua, LA Q D, et al. Offloading in mobile edge computing: task allocation and computational frequency scaling[J]. IEEE Transactions on Communications, 2017, 65(8): 3571–3584. doi: 10.1109/TCOMM.2017.2699660
    RAM S S, VEERAVALLI V V, and NEDIC A. Distributed non-autonomous power control through distributed convex optimization[C]. Proceedings of IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 2009: 3001–3005.
    LIU Peng, LI Jiandong, LI Hongyan, et al. Convex optimisation-based joint channel and power allocation scheme for orthogonal frequency division multiple access networks[J]. IET Communications, 2015, 9(1): 28–32. doi: 10.1049/iet-com.2014.0409
    3GPP organizational parthners. Evolved universal terrestrial radio access (E-UTRA); Further advancements for E-UTRA physical layer aspects (Release 9), document TS 36.814, 3GPP[OL]. http://www.3gpp.org/ftp/,2012.
  • 加載中
圖(6) / 表(2)
計(jì)量
  • 文章訪問數(shù):  3233
  • HTML全文瀏覽量:  1076
  • PDF下載量:  220
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-06-13
  • 修回日期:  2019-01-21
  • 網(wǎng)絡(luò)出版日期:  2019-02-14
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回