面向業(yè)務(wù)的彈性光網(wǎng)絡(luò)光路損傷感知能效路由策略
doi: 10.11999/JEIT180580
-
1.
重慶郵電大學(xué)通信與信息工程學(xué)院 ??重慶 ??400065
-
2.
重慶郵電大學(xué)工業(yè)物聯(lián)網(wǎng)與網(wǎng)絡(luò)化控制教育部重點(diǎn)實(shí)驗室 ??重慶 ??400065
-
3.
國網(wǎng)冀北電力有限公司信息通信分公司 ??北京 ??100053
Energy Efficiency Routing Strategy with Lightpath Impairment Awareness in Service-Oriented Elastic Optical Networks
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
3.
Information & Telecommunication Company, State Grid Jibei Electric Power Co., Ltd., Beijing 100053, China
-
摘要:
針對彈性光網(wǎng)絡(luò)中物理損傷導(dǎo)致業(yè)務(wù)頻譜利用率低和傳輸能耗高問題,該文提出一種面向業(yè)務(wù)的鏈路損傷感知頻譜分區(qū)(LI-ASP)能效路由策略。在LI-ASP策略中,為降低不同信道間非線性損傷,基于負(fù)載均衡設(shè)計一個綜合考慮鏈路頻譜狀態(tài)和傳輸損傷的路徑權(quán)重公式,根據(jù)調(diào)制方式的頻譜效率和最大傳輸距離構(gòu)造分層輔助圖,從最高調(diào)制等級開始,為高質(zhì)量業(yè)務(wù)選擇K條邊分離的最大權(quán)重傳輸路徑;為低質(zhì)量業(yè)務(wù)選擇K條邊分離的最短能效路徑。然后,LI-ASP策略根據(jù)業(yè)務(wù)速率比值對頻譜分區(qū),采用首次命中(FF)和尾端命中(LF)聯(lián)合頻譜分配方式,減少不同傳輸速率業(yè)務(wù)間的交叉相位調(diào)制。仿真結(jié)果表明,該文所提LI-ASP策略在有效降低帶寬阻塞率的同時,減少了業(yè)務(wù)傳輸能耗。
-
關(guān)鍵詞:
- 彈性光網(wǎng)絡(luò) /
- 物理損傷感知 /
- 負(fù)載均衡 /
- 頻譜分區(qū) /
- 能耗
Abstract:To address the problems of low spectrum utilization and high energy consumption caused by physical impairment in elastic optical networks, a service differentiated energy efficiency routing strategy with Link Impairment-Aware Spectrum Partition (LI-ASP) is proposed. For reducing the nonlinear impairment between different channels, a path weight formula jointly considering the link spectrum state and transmission impairment is designed to balance the load. A modulation level-layered auxiliary graph is constructed according to traffic’s spectrum efficiency and maximum transmission distance. Starting from the highest modulation in the auxiliary graph, the K link-disjoined maximum weight paths are selected for high quality requests, and the K link-disjoined shortest energy efficiency paths are selected for low quality requests. Then, LI-ASP strategy divides spectrum partition according to requests rate ratio. The First-Fit (FF) and Last-Fit (LF) spectrum allocation policies are used to reduce cross-phase modulation between the requests with different rates. The simulation results show that the proposed LI-ASP strategy can reduce the bandwidth blocking probability and energy consumption effectively.
-
表 1 不同調(diào)制方式下子載波傳輸速率、能耗、最大傳輸距離及信噪比閾值
調(diào)制方式 調(diào)制等級m 傳輸速率(Gb/s) 能耗功率(W) 最大傳輸距離(km) 信噪比閾值(dB) BPSK 1 12.5 112.374 4000 6.8 QPSK 2 25.0 133.416 2000 9.8 8QAM 3 37.5 154.457 1000 13.7 16QAM 4 50.0 175.489 500 16.5 32QAM 5 62.5 196.539 250 19.7 下載: 導(dǎo)出CSV
表 2 LI-ASP能效路由策略步驟
輸入 光網(wǎng)絡(luò)拓?fù)?{{G}}\left( {{{V}}, {{E}}, {{S}}} \right)$,節(jié)點(diǎn)集${{V}} = \left\{ {{v_i}|i = 1, 2, ·\!·\!· , |{{V}}|} \right\}$,鏈路集${{E}} = \left\{ {{e_{ij}}|i, j \in {{V}}, i \ne j} \right\}$,鏈路頻隙集${{S}} = \left\{ {{s_i}|i = 1, 2, ·\!·\!· , |{{S}}|} \right\}$,
業(yè)務(wù)集${{R}} = \left\{ {{r_i}|i = 1, 2, ·\!·\!· , |{{R}}|} \right\}$表示,令$k = 1$,$m = M$,業(yè)務(wù)請求${r_i}\left( {s, d, {\rm{fs}}\_n, Q} \right)$,s為源節(jié)點(diǎn),d為目的節(jié)點(diǎn),${\rm{fs}}\_n$為業(yè)務(wù)請求
頻隙數(shù)目,Q=1表示高質(zhì)量業(yè)務(wù);Q=0為低質(zhì)量業(yè)務(wù)。使用Dijkstra算法計算所有源目的節(jié)點(diǎn)間的K條最短路徑KSP集合(預(yù)處理),
M層調(diào)制等級輔助圖(預(yù)處理)。輸出 業(yè)務(wù)${r_i}$的傳輸路徑${p_k}$和分配的第1個、最后頻隙索引值${f_ {\rm{ts}}}$和${f_ {\rm{te}}}$。 步驟 1 業(yè)務(wù)${r_i}\left( {s, d, {\rm{fs}}\_n, Q} \right)$到達(dá),從頻譜效率最高調(diào)制等級m=M分層輔助圖開始為業(yè)務(wù)選擇傳輸路徑; 步驟 2 判斷Q是否為1,若為1,為高質(zhì)量業(yè)務(wù),算法轉(zhuǎn)步驟3;否則,為低質(zhì)量業(yè)務(wù),轉(zhuǎn)算法步驟4; 步驟 3 根據(jù)式(8)計算源和目的節(jié)點(diǎn)間K條滿足跳數(shù)閾值Hop的最大權(quán)重路徑${{{P}}^H}\{{p_1}, {p_2}, ·\!·\!· , {p_K}\}$,轉(zhuǎn)步驟5; 步驟 4 根據(jù)業(yè)務(wù)源節(jié)點(diǎn)和目的節(jié)點(diǎn)選擇存放在KSP中的K條最短路徑,根據(jù)能耗模型計算路徑能耗,按照能耗大小升序排列K條路徑
${{{P}}^L}\{ {p_1}, {p_2}, ·\!·\!· , {p_K}\}$;步驟 5 計算當(dāng)前調(diào)制等級下業(yè)務(wù)${r_i}$傳輸所需的頻隙數(shù)目,從路徑集合中選擇第${p_k}$條路徑,$k = 1, 2, ·\!·\!· , K$,計算該路徑上可用頻譜塊Block
$\{ {b_1}, {b_2}, ·\!·\!· , {b_j}\} $,若可用頻譜塊集合非空,轉(zhuǎn)算法步驟8;否則轉(zhuǎn)算法步驟6;步驟 6 若$m < 1$,當(dāng)前傳輸路徑無可用調(diào)制方式,轉(zhuǎn)步驟7;否則降低調(diào)制等級,$m = m - 1$,轉(zhuǎn)步驟2; 步驟 7 若$k > K$,業(yè)務(wù)${r_i}$被阻塞,釋放網(wǎng)絡(luò)中已傳輸業(yè)務(wù)占用的頻譜資源,更新光網(wǎng)絡(luò)G的頻譜資源;否則,$k = k + 1$,$m = M$,轉(zhuǎn)算
法步驟5;步驟 8 根據(jù)業(yè)務(wù)請求頻隙數(shù)目${\rm{fs}}\_n$,分別計算采用FF和LF頻譜分區(qū)分配策略需要占用候選路徑上各鏈路相鄰信道數(shù)目和的值,選擇占
用相鄰信道數(shù)目和值較小的FF或LF頻譜分配方式;步驟 9 根據(jù)物理損傷模型計算該路徑上業(yè)務(wù)的傳輸誤比特率${\rm{BER}}_{{r_i}}^k$,若${\rm{BER}}_{{r_i}}^k$小于業(yè)務(wù)誤碼率閾值,轉(zhuǎn)算法步驟10;否則,$m = m - 1$,
轉(zhuǎn)算法步驟5;步驟 10 判斷傳輸路徑${p_k}$是否造成網(wǎng)絡(luò)中其他正傳輸業(yè)務(wù)阻塞,若是,記錄阻塞的業(yè)務(wù)BT$\{ {\rm{rb}}_1, {\rm{rb}}_2, ·\!·\!· , {\rm{rb}}_i\} $,調(diào)用LI-ASP能效路由策略重
配置被阻塞的業(yè)務(wù)BT$\{ {\rm{rb}}_1, {\rm{rb}}_2, ·\!·\!· , {\rm{rb}}_i\} $;否則,轉(zhuǎn)算法步驟12;步驟 11 若業(yè)務(wù)重配置成功,轉(zhuǎn)算法步驟12;否則,$m = m - 1$,轉(zhuǎn)算法步驟5; 步驟 12 業(yè)務(wù)${r_i}$成功傳輸,記錄傳輸路徑${p_k}$,記錄分配的第1個頻隙索引值${f_ {\rm{ts}}}$和最后頻隙索引值${f_ {\rm{te}}}$。 下載: 導(dǎo)出CSV
表 3 物理損傷參數(shù)設(shè)置
參數(shù) 值 參數(shù) 值 G(W/THz) 0.015 L(km) 80 $\alpha $(dB/km) 0.22 v(THz) 193 nsp 1.8 ${\beta _2}$(ps2/km) –21.7 h(J/s) $6.626 \times {10^{ - 34}}$ $\gamma $(W·km)–1 1.32 ${\rm{BER}}_t^h$ ${10^{ - 12}}$ ${\rm{BER}}_t^l$ ${10^{ - 9}}$ 下載: 導(dǎo)出CSV
-
熊余, 劉川菠, 孫鵬. 考慮業(yè)務(wù)服務(wù)質(zhì)量的光線路終端節(jié)能算法[J]. 重慶郵電大學(xué)學(xué)報, 2017, 29(2): 208–215. doi: 10.3979/j.issn.1673-825X.2017.02.011XIONG Yu, LIU Chuanbo, and SUN Peng. Energy saving algorithm for optical line terminal considering quality of service[J]. Journal of Chongqing University of Posts and Telecommunications, 2017, 29(2): 208–215. doi: 10.3979/j.issn.1673-825X.2017.02.011 劉煥淋, 熊翠連, 陳勇. 頻譜效率優(yōu)先的任播路由沖突感知的彈性光網(wǎng)絡(luò)資源重配置[J]. 電子與信息學(xué)報, 2017, 39(7): 1697–1703. doi: 10.11999/JEIT161093LIU Huanlin, XIONG Cuilian, and CHEN Yong. Collision-aware reconfiguration resource based on spectrum efficiency first for anycast routing in elastic optical networks[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1697–1703. doi: 10.11999/JEIT161093 LIU Huanlin, Lü Lei, CHEN Yong, et al. Fragmentation-avoiding spectrum assignment strategy based on spectrum partition for elastic optical networks[J]. IEEE Photonics Journal, 2017, 9(5): 1–13. doi: 10.1109/JPHOT.2017.2739750 鮑寧海, 劉翔, 張治中, 等. WDM節(jié)能光網(wǎng)絡(luò)中的抗毀保護(hù)算法研究[J]. 重慶郵電大學(xué)學(xué)報, 2012, 24(3): 278–282. doi: 10.3979/j.issn.1673-825X.2015.03.002BAO Ninghai, LIU Xiang, ZHANG Zhizhong, et al. Survival protection algorithm in WDM energy-efficient optical network[J]. Journal of Chongqing University of Posts and Telecommunications, 2012, 24(3): 278–282. doi: 10.3979/j.issn.1673-825X.2015.03.002 TAN Yanxia, GU Rentao, and JI Yuefeng. Energy-efficient routing, modulation and spectrum allocation in elastic optical networks[J]. Optical Fiber Technology, 2017, 36(2017): 297–305. doi: 10.1016/j.yofte.2017.05.001 YANG Song and KUIPERS F. Impairment-aware routing in translucent spectrum-sliced elastic optical path networks[C]. European Conference on Networks and Optical Communications, Vilanova, Spain, 2012: 1–6. doi: 10.1109/NOC.2012.6249946. AGRELL E, ZHAO Juzi, LI Yan, et al. Traffic-grooming-and multipath-routing-enabled impairment-aware elastic optical networks[J]. Journal of Optical Communications and Networking, 2016, 8(2): 58–70. doi: 10.1364/JOCN.8.000058 ZHAO Juzi, WYMEERSCH H, and AGRELL E. Nonlinear impairment-aware static resource allocation in elastic optical networks[J]. Journal of Lightwave Technology, 2015, 33(22): 4554–4564. doi: 10.1109/JLT.2015.2474130 REN Rongrong, HOU Weigang, GUO Lei, et al. Spectrum and energy-efficient survivable routing algorithm in elastic optical network[J]. Optik - International Journal for Light and Electron Optics, 2016, 127(20): 8795–8806. doi: 10.1016/j.ijleo.2016.06.088 KLEKAMP A, DISCHLER R, and BUCHALI F. Transmission reach of optical-OFDM superchannels with 10-600 Gb/s for transparent bit-rate adaptive networks[C]. European Conference and Exhibition on Optical Communication, Geneva, Switzerland, 2011: 1–3. doi: 10.1364/ECOC.2011.Tu.3.K.2. ZHAO Jijun, WANG Wenyan, LI Wei, et al. A novel partition-plane impairment aware routing and spectrum assignment algorithm in mixed line rates elastic optical networks[J]. Photonic Network Communications, 2017, 33(1): 1–8. doi: 10.1007/s11107-015-0601-4 ABKENAR F S, RAHBAR A G, EBRAHIMZADEH A. Providing Quality of Service (QoS) for data traffic in Elastic Optical Networks (EONs)[J]. Arabian Journal for Science and Engineering, 2016, 41(3): 1–10. doi: 10.1007/s13369-015-1886-4 GUO Lei, WU Ying, HOU Weigang, et al. Green grooming in spectrum-sliced elastic optical path networks[J]. Photonic Network Communications, 2016, 32(1): 115–125. doi: 10.1007/s11107-015-0580-5 LIU Huanlin, ZHOU Bangtao, and CHEN Yong. Spectrum allocation based on spectrum integration and re-routing for elastic optical networks[J]. IET Optoelectronics, 2016, 10(5): 179–183. doi: 10.1049/iet-opt.2015.0136 TANAKA T, INUI T, KADOHATA A, et al. Multiperiod IP-over-elastic network reconfiguration with adaptive bandwidth resizing and modulation[J]. Journal of Optical Communications and Networking, 2016, 8(7): A180–A190. doi: 10.1364/JOCN.8.00A180 -