一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

面向業(yè)務(wù)的彈性光網(wǎng)絡(luò)光路損傷感知能效路由策略

劉煥淋 方菲 黃俊 陳勇 向敏 馬躍

劉煥淋, 方菲, 黃俊, 陳勇, 向敏, 馬躍. 面向業(yè)務(wù)的彈性光網(wǎng)絡(luò)光路損傷感知能效路由策略[J]. 電子與信息學(xué)報, 2019, 41(5): 1202-1209. doi: 10.11999/JEIT180580
引用本文: 劉煥淋, 方菲, 黃俊, 陳勇, 向敏, 馬躍. 面向業(yè)務(wù)的彈性光網(wǎng)絡(luò)光路損傷感知能效路由策略[J]. 電子與信息學(xué)報, 2019, 41(5): 1202-1209. doi: 10.11999/JEIT180580
Huanlin LIU, Fei FANG, Jun HUANG, Yong CHEN, Min XIANG, Yue MA. Energy Efficiency Routing Strategy with Lightpath Impairment Awareness in Service-Oriented Elastic Optical Networks[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1202-1209. doi: 10.11999/JEIT180580
Citation: Huanlin LIU, Fei FANG, Jun HUANG, Yong CHEN, Min XIANG, Yue MA. Energy Efficiency Routing Strategy with Lightpath Impairment Awareness in Service-Oriented Elastic Optical Networks[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1202-1209. doi: 10.11999/JEIT180580

面向業(yè)務(wù)的彈性光網(wǎng)絡(luò)光路損傷感知能效路由策略

doi: 10.11999/JEIT180580
基金項目: 國家電網(wǎng)公司科技項目(52010118000Q)
詳細(xì)信息
    作者簡介:

    劉煥淋:女,1970年生,教授,研究方向為光通信技術(shù)與未來網(wǎng)絡(luò)

    方菲:女,1995年生,碩士生,研究方向為光網(wǎng)絡(luò)能效節(jié)點(diǎn)與調(diào)度算法

    黃?。耗?,1992年生,碩士生,研究方向為光網(wǎng)絡(luò)QoS保證與節(jié)能

    陳勇:男,1963年生,教授,研究方向為光通信技術(shù)、傳感檢測與自動化技術(shù)

    向敏:男,1974年生,教授,研究方向為智能電網(wǎng),工業(yè)物聯(lián)網(wǎng)

    馬躍:男,1977年生,高級工程師,研究方向為電力通信

    通訊作者:

    劉煥淋 liuhl2@sina.com

  • 中圖分類號: TN929.11

Energy Efficiency Routing Strategy with Lightpath Impairment Awareness in Service-Oriented Elastic Optical Networks

Funds: The Project of Science and Technology of State Grid Corporation of China (52010118000Q)
  • 摘要:

    針對彈性光網(wǎng)絡(luò)中物理損傷導(dǎo)致業(yè)務(wù)頻譜利用率低和傳輸能耗高問題,該文提出一種面向業(yè)務(wù)的鏈路損傷感知頻譜分區(qū)(LI-ASP)能效路由策略。在LI-ASP策略中,為降低不同信道間非線性損傷,基于負(fù)載均衡設(shè)計一個綜合考慮鏈路頻譜狀態(tài)和傳輸損傷的路徑權(quán)重公式,根據(jù)調(diào)制方式的頻譜效率和最大傳輸距離構(gòu)造分層輔助圖,從最高調(diào)制等級開始,為高質(zhì)量業(yè)務(wù)選擇K條邊分離的最大權(quán)重傳輸路徑;為低質(zhì)量業(yè)務(wù)選擇K條邊分離的最短能效路徑。然后,LI-ASP策略根據(jù)業(yè)務(wù)速率比值對頻譜分區(qū),采用首次命中(FF)和尾端命中(LF)聯(lián)合頻譜分配方式,減少不同傳輸速率業(yè)務(wù)間的交叉相位調(diào)制。仿真結(jié)果表明,該文所提LI-ASP策略在有效降低帶寬阻塞率的同時,減少了業(yè)務(wù)傳輸能耗。

  • 圖  1  調(diào)制等級分層輔助示意圖

    圖  2  仿真網(wǎng)絡(luò)拓?fù)?/p>

    圖  3  不同業(yè)務(wù)負(fù)載下各算法帶寬阻塞率的對比

    圖  4  4種算法在不同業(yè)務(wù)負(fù)載下高質(zhì)量業(yè)務(wù)帶寬阻塞率的對比

    圖  5  4種算法在不同業(yè)務(wù)負(fù)載下低質(zhì)量業(yè)務(wù)帶寬阻塞率的對比

    圖  6  4種算法在不同業(yè)務(wù)負(fù)載下頻譜利用率的對比

    圖  7  3種算法在不同業(yè)務(wù)負(fù)載下節(jié)能率的對比

    表  1  不同調(diào)制方式下子載波傳輸速率、能耗、最大傳輸距離及信噪比閾值

    調(diào)制方式調(diào)制等級m傳輸速率(Gb/s)能耗功率(W)最大傳輸距離(km)信噪比閾值(dB)
    BPSK 1 12.5 112.374 4000 6.8
    QPSK 2 25.0 133.416 2000 9.8
    8QAM 3 37.5 154.457 1000 13.7
    16QAM 4 50.0 175.489 500 16.5
    32QAM 5 62.5 196.539 250 19.7
    下載: 導(dǎo)出CSV

    表  2  LI-ASP能效路由策略步驟

     輸入 光網(wǎng)絡(luò)拓?fù)?{{G}}\left( {{{V}}, {{E}}, {{S}}} \right)$,節(jié)點(diǎn)集${{V}} = \left\{ {{v_i}|i = 1, 2, ·\!·\!· , |{{V}}|} \right\}$,鏈路集${{E}} = \left\{ {{e_{ij}}|i, j \in {{V}}, i \ne j} \right\}$,鏈路頻隙集${{S}} = \left\{ {{s_i}|i = 1, 2, ·\!·\!· , |{{S}}|} \right\}$,
    業(yè)務(wù)集${{R}} = \left\{ {{r_i}|i = 1, 2, ·\!·\!· , |{{R}}|} \right\}$表示,令$k = 1$,$m = M$,業(yè)務(wù)請求${r_i}\left( {s, d, {\rm{fs}}\_n, Q} \right)$,s為源節(jié)點(diǎn),d為目的節(jié)點(diǎn),${\rm{fs}}\_n$為業(yè)務(wù)請求
    頻隙數(shù)目,Q=1表示高質(zhì)量業(yè)務(wù);Q=0為低質(zhì)量業(yè)務(wù)。使用Dijkstra算法計算所有源目的節(jié)點(diǎn)間的K條最短路徑KSP集合(預(yù)處理),
    M層調(diào)制等級輔助圖(預(yù)處理)。
     輸出 業(yè)務(wù)${r_i}$的傳輸路徑${p_k}$和分配的第1個、最后頻隙索引值${f_ {\rm{ts}}}$和${f_ {\rm{te}}}$。
     步驟 1 業(yè)務(wù)${r_i}\left( {s, d, {\rm{fs}}\_n, Q} \right)$到達(dá),從頻譜效率最高調(diào)制等級m=M分層輔助圖開始為業(yè)務(wù)選擇傳輸路徑;
     步驟 2 判斷Q是否為1,若為1,為高質(zhì)量業(yè)務(wù),算法轉(zhuǎn)步驟3;否則,為低質(zhì)量業(yè)務(wù),轉(zhuǎn)算法步驟4;
     步驟 3 根據(jù)式(8)計算源和目的節(jié)點(diǎn)間K條滿足跳數(shù)閾值Hop的最大權(quán)重路徑${{{P}}^H}\{{p_1}, {p_2}, ·\!·\!· , {p_K}\}$,轉(zhuǎn)步驟5;
     步驟 4 根據(jù)業(yè)務(wù)源節(jié)點(diǎn)和目的節(jié)點(diǎn)選擇存放在KSP中的K條最短路徑,根據(jù)能耗模型計算路徑能耗,按照能耗大小升序排列K條路徑
    ${{{P}}^L}\{ {p_1}, {p_2}, ·\!·\!· , {p_K}\}$;
     步驟 5 計算當(dāng)前調(diào)制等級下業(yè)務(wù)${r_i}$傳輸所需的頻隙數(shù)目,從路徑集合中選擇第${p_k}$條路徑,$k = 1, 2, ·\!·\!· , K$,計算該路徑上可用頻譜塊Block
    $\{ {b_1}, {b_2}, ·\!·\!· , {b_j}\} $,若可用頻譜塊集合非空,轉(zhuǎn)算法步驟8;否則轉(zhuǎn)算法步驟6;
     步驟 6 若$m < 1$,當(dāng)前傳輸路徑無可用調(diào)制方式,轉(zhuǎn)步驟7;否則降低調(diào)制等級,$m = m - 1$,轉(zhuǎn)步驟2;
     步驟 7 若$k > K$,業(yè)務(wù)${r_i}$被阻塞,釋放網(wǎng)絡(luò)中已傳輸業(yè)務(wù)占用的頻譜資源,更新光網(wǎng)絡(luò)G的頻譜資源;否則,$k = k + 1$,$m = M$,轉(zhuǎn)算
    法步驟5;
     步驟 8 根據(jù)業(yè)務(wù)請求頻隙數(shù)目${\rm{fs}}\_n$,分別計算采用FF和LF頻譜分區(qū)分配策略需要占用候選路徑上各鏈路相鄰信道數(shù)目和的值,選擇占
    用相鄰信道數(shù)目和值較小的FF或LF頻譜分配方式;
     步驟 9 根據(jù)物理損傷模型計算該路徑上業(yè)務(wù)的傳輸誤比特率${\rm{BER}}_{{r_i}}^k$,若${\rm{BER}}_{{r_i}}^k$小于業(yè)務(wù)誤碼率閾值,轉(zhuǎn)算法步驟10;否則,$m = m - 1$,
    轉(zhuǎn)算法步驟5;
     步驟 10 判斷傳輸路徑${p_k}$是否造成網(wǎng)絡(luò)中其他正傳輸業(yè)務(wù)阻塞,若是,記錄阻塞的業(yè)務(wù)BT$\{ {\rm{rb}}_1, {\rm{rb}}_2, ·\!·\!· , {\rm{rb}}_i\} $,調(diào)用LI-ASP能效路由策略重
    配置被阻塞的業(yè)務(wù)BT$\{ {\rm{rb}}_1, {\rm{rb}}_2, ·\!·\!· , {\rm{rb}}_i\} $;否則,轉(zhuǎn)算法步驟12;
     步驟 11 若業(yè)務(wù)重配置成功,轉(zhuǎn)算法步驟12;否則,$m = m - 1$,轉(zhuǎn)算法步驟5;
     步驟 12 業(yè)務(wù)${r_i}$成功傳輸,記錄傳輸路徑${p_k}$,記錄分配的第1個頻隙索引值${f_ {\rm{ts}}}$和最后頻隙索引值${f_ {\rm{te}}}$。
    下載: 導(dǎo)出CSV

    表  3  物理損傷參數(shù)設(shè)置

    參數(shù) 參數(shù)
    G(W/THz)0.015 L(km)80
    $\alpha $(dB/km)0.22v(THz)193
    nsp1.8${\beta _2}$(ps2/km)–21.7
    h(J/s)$6.626 \times {10^{ - 34}}$$\gamma $(W·km)–11.32
    ${\rm{BER}}_t^h$${10^{ - 12}}$${\rm{BER}}_t^l$${10^{ - 9}}$
    下載: 導(dǎo)出CSV
  • 熊余, 劉川菠, 孫鵬. 考慮業(yè)務(wù)服務(wù)質(zhì)量的光線路終端節(jié)能算法[J]. 重慶郵電大學(xué)學(xué)報, 2017, 29(2): 208–215. doi: 10.3979/j.issn.1673-825X.2017.02.011

    XIONG Yu, LIU Chuanbo, and SUN Peng. Energy saving algorithm for optical line terminal considering quality of service[J]. Journal of Chongqing University of Posts and Telecommunications, 2017, 29(2): 208–215. doi: 10.3979/j.issn.1673-825X.2017.02.011
    劉煥淋, 熊翠連, 陳勇. 頻譜效率優(yōu)先的任播路由沖突感知的彈性光網(wǎng)絡(luò)資源重配置[J]. 電子與信息學(xué)報, 2017, 39(7): 1697–1703. doi: 10.11999/JEIT161093

    LIU Huanlin, XIONG Cuilian, and CHEN Yong. Collision-aware reconfiguration resource based on spectrum efficiency first for anycast routing in elastic optical networks[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1697–1703. doi: 10.11999/JEIT161093
    LIU Huanlin, Lü Lei, CHEN Yong, et al. Fragmentation-avoiding spectrum assignment strategy based on spectrum partition for elastic optical networks[J]. IEEE Photonics Journal, 2017, 9(5): 1–13. doi: 10.1109/JPHOT.2017.2739750
    鮑寧海, 劉翔, 張治中, 等. WDM節(jié)能光網(wǎng)絡(luò)中的抗毀保護(hù)算法研究[J]. 重慶郵電大學(xué)學(xué)報, 2012, 24(3): 278–282. doi: 10.3979/j.issn.1673-825X.2015.03.002

    BAO Ninghai, LIU Xiang, ZHANG Zhizhong, et al. Survival protection algorithm in WDM energy-efficient optical network[J]. Journal of Chongqing University of Posts and Telecommunications, 2012, 24(3): 278–282. doi: 10.3979/j.issn.1673-825X.2015.03.002
    TAN Yanxia, GU Rentao, and JI Yuefeng. Energy-efficient routing, modulation and spectrum allocation in elastic optical networks[J]. Optical Fiber Technology, 2017, 36(2017): 297–305. doi: 10.1016/j.yofte.2017.05.001
    YANG Song and KUIPERS F. Impairment-aware routing in translucent spectrum-sliced elastic optical path networks[C]. European Conference on Networks and Optical Communications, Vilanova, Spain, 2012: 1–6. doi: 10.1109/NOC.2012.6249946.
    AGRELL E, ZHAO Juzi, LI Yan, et al. Traffic-grooming-and multipath-routing-enabled impairment-aware elastic optical networks[J]. Journal of Optical Communications and Networking, 2016, 8(2): 58–70. doi: 10.1364/JOCN.8.000058
    ZHAO Juzi, WYMEERSCH H, and AGRELL E. Nonlinear impairment-aware static resource allocation in elastic optical networks[J]. Journal of Lightwave Technology, 2015, 33(22): 4554–4564. doi: 10.1109/JLT.2015.2474130
    REN Rongrong, HOU Weigang, GUO Lei, et al. Spectrum and energy-efficient survivable routing algorithm in elastic optical network[J]. Optik - International Journal for Light and Electron Optics, 2016, 127(20): 8795–8806. doi: 10.1016/j.ijleo.2016.06.088
    KLEKAMP A, DISCHLER R, and BUCHALI F. Transmission reach of optical-OFDM superchannels with 10-600 Gb/s for transparent bit-rate adaptive networks[C]. European Conference and Exhibition on Optical Communication, Geneva, Switzerland, 2011: 1–3. doi: 10.1364/ECOC.2011.Tu.3.K.2.
    ZHAO Jijun, WANG Wenyan, LI Wei, et al. A novel partition-plane impairment aware routing and spectrum assignment algorithm in mixed line rates elastic optical networks[J]. Photonic Network Communications, 2017, 33(1): 1–8. doi: 10.1007/s11107-015-0601-4
    ABKENAR F S, RAHBAR A G, EBRAHIMZADEH A. Providing Quality of Service (QoS) for data traffic in Elastic Optical Networks (EONs)[J]. Arabian Journal for Science and Engineering, 2016, 41(3): 1–10. doi: 10.1007/s13369-015-1886-4
    GUO Lei, WU Ying, HOU Weigang, et al. Green grooming in spectrum-sliced elastic optical path networks[J]. Photonic Network Communications, 2016, 32(1): 115–125. doi: 10.1007/s11107-015-0580-5
    LIU Huanlin, ZHOU Bangtao, and CHEN Yong. Spectrum allocation based on spectrum integration and re-routing for elastic optical networks[J]. IET Optoelectronics, 2016, 10(5): 179–183. doi: 10.1049/iet-opt.2015.0136
    TANAKA T, INUI T, KADOHATA A, et al. Multiperiod IP-over-elastic network reconfiguration with adaptive bandwidth resizing and modulation[J]. Journal of Optical Communications and Networking, 2016, 8(7): A180–A190. doi: 10.1364/JOCN.8.00A180
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數(shù):  3372
  • HTML全文瀏覽量:  781
  • PDF下載量:  102
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-06-12
  • 修回日期:  2018-12-11
  • 網(wǎng)絡(luò)出版日期:  2018-12-17
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回