一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

合成孔徑雷達海面溢油探測研究進展

李煜 陳杰 張淵智

李煜, 陳杰, 張淵智. 合成孔徑雷達海面溢油探測研究進展[J]. 電子與信息學報, 2019, 41(3): 751-762. doi: 10.11999/JEIT180468
引用本文: 李煜, 陳杰, 張淵智. 合成孔徑雷達海面溢油探測研究進展[J]. 電子與信息學報, 2019, 41(3): 751-762. doi: 10.11999/JEIT180468
Yu LI, Jie CHEN, Yuanzhi ZHANG. Progress in Research on Marine Oil Spills Detection Using Synthetic Aperture Radar[J]. Journal of Electronics & Information Technology, 2019, 41(3): 751-762. doi: 10.11999/JEIT180468
Citation: Yu LI, Jie CHEN, Yuanzhi ZHANG. Progress in Research on Marine Oil Spills Detection Using Synthetic Aperture Radar[J]. Journal of Electronics & Information Technology, 2019, 41(3): 751-762. doi: 10.11999/JEIT180468

合成孔徑雷達海面溢油探測研究進展

doi: 10.11999/JEIT180468
基金項目: 國家重點研發(fā)計劃(2016YFB0501501),國家自然科學基金(41706201)
詳細信息
    作者簡介:

    李煜:男,1986年生,講師,研究方向為遙感圖像處理和模式識別

    陳杰:男,1973年生,教授,研究方向為合成孔徑雷達系統(tǒng)建模和信號處理

    張淵智:男,1964年生,研究員,研究方向為微波和光學遙感

    通訊作者:

    張淵智 zhangyz@nao.cas.cn

  • 中圖分類號: TN957.52

Progress in Research on Marine Oil Spills Detection Using Synthetic Aperture Radar

Funds: The National key Research and Development Project of China (2016YFB0501501), The National Natural Science Foundation of China (41706201)
  • 摘要:

    海洋溢油污染不僅嚴重威脅海洋生態(tài)安全、破壞海岸帶環(huán)境,而且直接和間接地影響著廣大人民群眾的生活和健康以及區(qū)域社會經(jīng)濟的發(fā)展。合成孔徑雷達因其具有全天候和高靈敏度的觀測能力而成為海面油膜探測的主要手段之一。該文從SAR海面油膜探測的基本原理出發(fā),介紹了單極化、全極化和緊縮極化SAR海面油膜探測技術(shù)的國內(nèi)外最新研究進展,對該技術(shù)手段在實際應(yīng)用中遇到的主要困難和挑戰(zhàn)做了深入分析,最后總結(jié)展望了該技術(shù)未來發(fā)展的廣闊前景。

  • 圖  1  墨西哥灣“深水地平線”溢油事故[3]

    圖  2  SAR成像幾何示意圖

    圖  4  包含溢油區(qū)域的汕尾附近海域SAR后向散射VV通道圖像(圖像來自歐空局)

    圖  3  雷達信號海面散射示意圖

    表  1  常用單極化SAR油膜特征

    強度特征形態(tài)學特征紋理特征*環(huán)境特征
    油膜后向散射強度(${\mu _{{\rm{obj}}}}$) 面積(A) 同質(zhì)性(Homogeneity) 距海岸距離
    油膜后向散射方差(${\sigma _{{\rm{obj}}}}$) 周長(P ) 對比度(Contrast) 距最近黑斑距離
    油膜周圍后向散射(${\mu _{{\rm{sce}}}}$) 復(fù)雜度(C ) 差異度(Dissimilarity) 周圍黑斑數(shù)量
    灰度比(${\mu _{{\rm{obj}}}}/{\mu _{{\rm{sce}}}}$) 不對稱性 熵(Entropy) 周圍船只數(shù)量
    方差比(${\sigma _{{\rm{obj}}}}/{\sigma _{{\rm{sce}}}}$) 歐拉數(shù) 均值(Mean)
    ISRI(${\mu _{{\rm{obj}}}}/{\sigma _{{\rm{obj}}}}$) 形狀指數(shù) 方差(Variance)
    ISRO(${\mu _{{\rm{obj}}}}/{\sigma _{{\rm{sce}}}}$) 軸線長度 相關(guān)性(Correlation)
    油膜最小灰度值(MSV) 緊致度
    最大對比度(${\sigma _{{\rm{sce}}}}$-MSV)
    邊緣梯度
    注:紋理特征通過灰度共生矩陣(Gray-Level Co-occurrence Matrix, GLCM)得到
    下載: 導(dǎo)出CSV
  • 劉鵬. SAR海面溢油檢測與識別方法研究[D]. [博士論文], 中國海洋大學, 2012.

    LIU Peng. Research on ocean oil spill detection and recognition[D]. [Ph.D. dissertation], Ocean University of China, 2012: 1–2.
    朱姝霖. 海上溢油事故的影響及處理分析[J]. 航海, 2011(4): 54–56.

    ZHU Shulin. The influence and treatment analysis of the marine oil spill accident[J]. Navigation, 2011(4): 54–56.
    Deepwater Horizon oil spill[OL]. https://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill.
    羅孝學, 許庭春. 海上溢油事故及其防范[J]. 中國水運: 理論版, 2006, 4(7): 18–19.

    LUO Xiaoxue and XU Tingchun. Marine oil spill accident at sea and its prevention[J]. China Water Transport, 2006, 4(7): 18–19.
    勞輝. 最近29年我國沿海船舶、碼頭溢油50噸以上事故統(tǒng)計[J]. 交通環(huán)保, 2003, 24(6): 47.

    LAO Hui. Statistics on accidents of over 50 tons of oil spills on ships and wharfs along the coast in recent 29 years[J]. Environmental Protection in Transportation, 2003, 24(6): 47.
    NOAA. NOAA office of response and restoration, open water oil identification job aid for aerial observation. [OL]. http://response.restoration.noaa.gov/jobaid/orderform, 2016.
    SUKAWATTANAVIJIT C, CHEN Jie, and ZHANG Hongsheng. GA-SVM algorithm for improving land-cover classification using SAR and optical remote sensing data[J]. IEEE Geoscience & Remote Sensing Letters, 2017, 14(3): 284–288. doi: 10.1109/LGRS.2016.2628406
    LIU Lin and ZHANG Yuanzhi. Urban heat island analysis using the landsat TM data and ASTER data: A case study in Hong Kong[J]. Remote Sensing, 2011, 3(7): 1535–1552. doi: 10.3390/rs3071535
    ZHANG Yuanzhi, PULLIAINEN J, KOPONEN S, et al. Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data[J]. Remote Sensing of Environment, 2002, 81(2): 327–336. doi: 10.1016/S0034-4257(02)00009-3
    Jones C , Holt B. Experimental L-Band Airborne SAR for Oil Spill Response at Sea and in Coastal Waters[J]. Sensors, 2018, 18(2): 641–106. doi: 10.3390/s18020641
    GAUTHIER M, WEIR L, OU Z, et al. Integrated satellite tracking of pollution: A new operational program[C]. IEEE International Geoscience & Remote Sensing Symposium, Barcelona, Spain, 2007: 967–970.
    劉康煒, 楊文玉. 海上溢油監(jiān)測技術(shù)研究進展[J]. 安全、健康和環(huán)境, 2012, 12(7): 1–3. doi: 10.3969/j.issn.1672-7932.2012.07.002
    CHEN Jie, IQBAL M, YANG Wei, et al. Mitigation of azimuth ambiguities in spaceborne stripmap SAR images using selective restoration[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(7): 4038–4045. doi: 10.1109/TGRS.2013.2279109
    BAMLER R. Principles of synthetic aperture radar[J]. Surveys in Geophysics, 2001, 21(2-3): 147–157. doi: 10.1023/A:1006790026612
    ARISTOTLE. Problematica Physica[M].Leiden, Koninklijke Brill NV, 2015.
    MARANGONI C. Sul principio della viscosita superficiale dei liquidi stabili[J]. Nuovo Cimento, 1872, 5-6(1): 239–273. doi: 10.1007/BF02718643
    SOLBERG A H S. Remote sensing of ocean oil-spill pollution[J]. Proceedings of the IEEE, 2012, 100(10): 2931–2945. doi: 10.1109/JPROC.2012.2196250
    SOLBERG AHS, STORVIK G, SOLBERG R, et al. Automatic detection of oil spills in ERS SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(4): 1916–1924. doi: 10.1109/36.774704
    MIGLIACCIO M, FERRARA G, GAMBARDELLA A, et al. A new stochastic model for oil spill observation by means of single-look SAR data[J]. Environmental Research, Engineering and Management, 2007, 1(39): 24–29. doi: 10.1109/BALTIC.2006.7266181
    SHU Yuanming, LI J, and YOUSIF H. Dark-spot detection from SAR intensity imagery with spatial density thresholding for oil-spill monitoring[J]. Remote Sensing of Environment, 2010, 114(9): 2026–2035. doi: 10.1016/j.rse.2010.04.009
    BARNI M, BETTI M, and MECOCCI A. A fuzzy approach to oil spill detection on SAR images[J]. IEEE International Geoscience and Remote Sensing Symposium, 1995, 1(I): 157–159. doi: 10.1109/IGARSS.1995.519676
    MERCIER G, DERRODE S, PIECZYNSKI W, et al. Multiscale oil slick segmentation with Markov Chain Model[C]. IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 3501–3503.
    HUANG Bo, LI Hongga, and HUANG X. A level set method for oil slick segmentation in SAR images[J]. International Journal of Remote Sensing, 2005, 26(6): 1145–1156. doi: 10.1080/01431160512331326747
    ZHANG Yuanzhi, LIN Hui, LIU Qiang, et al. Oil-spill monitoring in the coastal waters of Hong Kong and vicinity[J]. Marine Geodesy, 2012, 35(1): 93–106. doi: 10.1080/01490419.2011.637872
    SOLBERG A, DOKKEN S T and SOLBERG R, Automatic detection of oil spills in ENVISAT, Radarsat and ERS SAR images[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings, Toulouse, 2003, 4: 2747–2749.
    FISCELLA B, GIANCASPRO A, NIRCHIO F, et al. Oil spill detection using marine SAR images[J]. International Journal of Remote Sensing, 2000, 21(18): 3561–3566. doi: 10.1080/014311600750037589
    DEL FRATE F, PETROCCHI A, LICHTENEGGER J, et al. Neural networks for oil spill detection using ERS-SAR data[J]. IEEE transactions on geoscience and remote sensing, 2000, 38(5): 2282–2287. doi: 10.1109/IGARSS.1999.773451
    TOPOUZELIS K, KARATHANASSI V, PAVLAKIS P, et al. Detection and discrimination between oil spills and look-alike phenomena through neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(4): 264–270. doi: 10.1016/j.isprsjprs.2007.05.003
    NIRCHIO F, SORGENTE M, GIANCASPRO A, et al. Automatic detection of oil spills from SAR images[J]. International Journal of Remote Sensing, 2005, 26(6): 1157–1174. doi: 10.1080/01431160512331326558
    KERAMITSOGLOUA I, CARTALISA C, and KIRANOUDIS C. Automatic identification of oil spills on satellite images[J]. Environmental Modeling & Software, 2006, 21(5): 640–652. doi: 10.1016/j.envsoft.2004.11.010
    GAMBARDELLA A, GIACINTO G, and MIGLIACCIO M. On the mathematical formulation of the SAR oil-spill observation problem[C], IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: 1382–1385.
    MARGHANY M, CRACKNELL A, and HASHIM M. Modification of fractal algorithm for oil spill detection from RADARSAT-1 SAR data[J]. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(2): 96–102. doi: 10.1016/j.jag.2008.09.002
    GARCIA-PINEDA O, MACDONALD I R, LI Xiaofeng, et al. Oil spill mapping and measurement in the gulf of mexico with textural classifier neural network algorithm (TCNNA)[J]. Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(6): 2517–2525. doi: 10.1109/JSTARS.2013.2244061
    MARGHANY M. Genetic algorithm for oil spill automatic detection from Envisat satellite data[C]. Computational Science and Its Applications - ICCSA, Ho Chi Minh City, Vietnam, 2013: 587–598.
    BROWN C E, and FINGAS M F. Synthetic Aperture Radar sensors: viable for marine oil spill response[C]. Arctic and Marine Oil spill Program, Canada, 2003: 299–310.
    MIGLIACCIO M, GAMBARDELLA A, and TRANFAGLIA M. SAR polarimetry to observe oil spills[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(2): 506–511. doi: 10.1109/TGRS.2006.888097
    MIGLIACCIO M, and TRANFAGLIA M. Study on the use of SAR polarimetric data to observe oil spills[C]. Europe Oceans 2005, Brest, France, 2005: 196–200.
    MIGLIACCIO M, FERRARA G, GAMBARDELLA A, et al. A new stochastic model for oil spill observation by means of single-look SAR data[J]. Environmental Engineering and Management Journal, 2007, 1(39): 24–29. doi: 10.1109/BALTIC.2006.7266181
    NUNZIATA F, MIGLIACCIO M, and GAMBARDELLA A. Pedestal height for sea oil slick observation[J]. Radar, Sonar & Navigation, 2011, 5(2): 103–110. doi: 10.1049/iet-rsn.2010.0092
    MIGLIACCIO M, NUNZIATA F, and GAMBARDELLA A. On the copolarized phase difference for oil spill observation[J]. International Journal of Remote Sensing, 2009, 30(6): 1587–1602. doi: 10.1080/01431160802520741
    SKRUNES S, BREKKE C, and ELTOFT T. An experimental study on oil spill characterization by multi-polarization SAR[C]. 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 139–142.
    MELSHELMER C, ALPERS W, and GADE M. Investigation of multifrequency/multipolarization radar signatures of rain cells, derived from SIR-C/X-SAR data[C]. Geoscience and Remote Sensing Symposium, Lincoln, USA 1996: 1370–1372.
    MINCHEW B, JONES C E, and HOLT B. Polarimetric analysis of backscatter from the deepwater Horizon oil spill using L-Band synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3812–3830. doi: 10.1109/TGRS.2012.2185804
    NUNZIATA F, SOBIESKI P, and MIGLIACCIO M. The Two-Scale BPM scattering model for sea biogenic slicks contrast[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 1949–1956. doi: 10.1109/TGRS.2009.2013135
    田維. 海面油膜雷達遙感檢測機理與方法研究[D]. [博士論文], 中國科學院遙感應(yīng)用研究所, 2009.
    LI Yu, ZHANG Yuanzhi, CHEN Jie, et al. Model-based sea surface scattering analysis for the DWH oil spill accident case[C]. Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 7711–7714.
    HANJSEK I, POTTIER E, and CLOUDE S R. Inversion of surface parameters from polarimetric SAR[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2003, 41(4): 727–744. doi: 10.1109/TGRS.2003.810702
    WANG Wenguang, LU Fei, WU Peng, et al. Oil spill detection from polarimetric SAR image[J]. Proc. Int. Conf. Signal Process, 2010: 832–835. doi: 10.1109/ICOSP.2010.5655943
    ZHANG Biao, PERRIE W, LI Xiaofeng, et al. Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image[J]. Geophysical Research Letters, 2011, 38(10): 415–421. doi: 10.1029/2011GL047013
    SKRUNES S, BREKKE C, JONES C E, et al. A multisensor comparison of experimental oil spills in polarimetric SAR for high wind conditions[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(11): 4948–4961. doi: 10.1109/JSTARS.2016.2565063
    CHEN Jie and QUEGAN S. Calibration of spaceborne CTLR compact polarimetric low-frequency SAR using mixed radar calibrators[J]. IEEE Transactions on Geoscience & Remote Sensing, 2011, 49(7): 2712–2723. doi: 10.1109/TGRS.2011.2109065
    RANEY R K. Hybrid-Polarity SAR architecture[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(11): 3397–3404. doi: 10.1109/TGRS.2007.895883
    AINSWORTH T L, KELLY J P, and LEE J S. Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2009, 64(5): 464–471. doi: 10.1016/j.isprsjprs.2008.12.008
    LAVALLE M, POTTIER E, SOLIMINI D, et al. Compact polarimetric SAR Interferometry: PALSAR observations and associated reconstruction algorithms[C]. Workshop on Science and Applications of SAR Polarimetry and Polarimetric, Frascati, Italy, 2009: 26–30.
    SOUYRIS JC, STACY N, AINSWORTH T, et al. SAR Compact Polarimetry (CP) for earth observation and planetology: Concept and challenges[C]. Proceedings of International Workshop on Science & Applications of Sar Polarimetry & Polarimetric Interferometry, Noordwijk, Netherlands, 2007: 22–26.
    NORD M E, AINSWORTH T L, et al. Comparison of compact polarimetric synthetic aperture radar modes[J]. IEEE Transactions on Geoscience & Remote Sensing, 2009, 47(1): 174–188. doi: 10.1109/TGRS.2008.20009
    YIN Junjun, YANG Jian, and ZHANG Xinzheng. On the ship detection performance with compact polarimetry[C]. IEEE Radar Conference, Kansas City, USA, 2011: 675–680.
    COLLINS M J, DENBINA M, and ATTEIA G. On the reconstruction of Quad-Pol SAR data from compact polarimetry data for ocean target detection[J]. IEEE Transactions on Geoscience & Remote Sensing, 2012, 51(1): 591–600. doi: 10.1109/TGRS.2012.2199760
    ZHANG Biao, LI Xiaofeng, PERRIE W, et al. Compact polarimetric synthetic aperture radar for marine oil platform and slick detection[J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 55(3): 1407–1423. doi: 10.1109/TGRS.2016.2623809
    LI Yu, ZHANG Yuanzhi, CHEN Jie, et al. Improved compact polarimetric SAR Quad-Pol reconstruction algorithm for oil spill detection[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 11(6): 1139–1142. doi: 10.1109/LGRS.2013.2288336
    SHIRVANY R, CHABERT M, and TOURNERET J Y. Ship and oil-spill detection using the degree of polarization in linear and hybrid/compact Dual-Pol SAR[J]. Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(3): 885–892. doi: 10.1109/JSTARS.2012.2182760
    CLOUDE S R, GOODENOUGH D G, and CHEN H. Compact decomposition theory[J]. Geoscience and Remote Sensing Letters, 2011, 9(1): 28–32. doi: 10.1109/LGRS.2011.2158983
    LI Haiyan, PERRIE W, HE Yijun, et al. Target detection on the ocean with the relative phase of compact polarimetry SAR[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(6): 3299–3305. doi: 10.1109/TGRS.2012.2224119
    LI Haiyan, PERRIE W, HE Yijun, et al. Analysis of the polarimetric SAR scattering properties of oil-covered waters[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8(8): 3751–3759. doi: 10.1109/JSTARS.2014.2348173
    TRUONG-LOI M, DUBOIS-FERNANDEZ P, FREEMAN A and POTTIER E, The conformity coefficient or how to explore the scattering behaviour from compact polarimetry mode[C].?2009 IEEE Radar Conference, Pasadena, CA, 2009: 1-6.
    YIN Junjun, YANG Jian, ZHOU ZhengShu, et al. The extended Bragg scattering model-based method for ship and oil-spill observation using compact polarimetric SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8(8): 3760–3772. doi: 10.1109/JSTARS.2014.2359141
    NUNZIATA F, MIGLIACCIO M, and LI Xiaofeng. Sea oil slick observation using Hybrid-Polarity SAR architecture[J]. IEEE Journal of Oceanic Engineering, 2015, 40(2): 426–440. doi: 10.1109/JOE.2014.2329424
    LI Yu, LIN Hui, ZHANG Yuanzhi, et al. Comparisons of circular transmit and linear receive compact polarimetric SAR features for oil slicks discrimination[J]. Journal of Sensors, 2015, 2015(99): 1–14. doi: 10.1155/2015/631561
    ZHANG Yuanzhi, LI Yu, LIANG X, et al. Comparison of oil spill classifications using fully and compact polarimetric SAR images[J]. Applied Sciences, 2017, 7(2): 193. doi: 10.3390/app7020193
    KUMAR L J V, KISHORE J K, and RAO P K. Decomposition methods for detection of oil spills based on Risat-1 SAR images[J]. Remote Sens. Geosci, 2014, 3(4): 1–10.
    BUONO A, NUNZIATA F, MIGLIACCIO M, et al. Polarimetric analysis of compact-polarimetry SAR architectures for sea oil slick observation[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(10): 5862–5874. doi: 10.1109/TGRS.2016.2574561
    ALPERS W, HOLT B, and ZENG K. Oil spill detection by imaging radars: Challenges and pitfalls[J]. In Remote Sensing of Environment, 2017, 201(2017): 133–147. doi: 10.1016/j.rse.2017.09.002
    CHEN Jie and QUEGAN S. Improved estimators of faraday rotation in spaceborne polarimetric SAR data[J]. IEEE Geoscience & Remote Sensing Letters, 2010, 7(4): 846–850. doi: 10.1109/LGRS.2010.2047002
    R A N E Y R , H y b r i d - P o l a r i t y S A R A r c h i t e c t u r e [ C ] . ? 2 0 0 6 I E E E I n t e r n a t i o n a l S y m p o s i u m o n G e o s c i e n c e a n d R e m o t e S e n s i n g , D e n v e r , C O , 2 0 0 6 : 3 8 4 6 - 3 8 4 8 . d o i :
    CHEN Guandong, LI Yu, SUN Guangmin, et al. Application of deep networks to oil spill detection using polarimetric Synthetic Aperture Radar Images[J]. Applied Sciences, 2017, 7(10): 968. doi: 10.3390/app7100968
  • 加載中
圖(4) / 表(1)
計量
  • 文章訪問數(shù):  2753
  • HTML全文瀏覽量:  1096
  • PDF下載量:  146
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-05-06
  • 修回日期:  2018-11-15
  • 網(wǎng)絡(luò)出版日期:  2018-12-17
  • 刊出日期:  2019-03-01

目錄

    /

    返回文章
    返回