一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于貝葉斯融合的時空流異常行為檢測模型

陳瑩 何丹丹

陳瑩, 何丹丹. 基于貝葉斯融合的時空流異常行為檢測模型[J]. 電子與信息學(xué)報, 2019, 41(5): 1137-1144. doi: 10.11999/JEIT180429
引用本文: 陳瑩, 何丹丹. 基于貝葉斯融合的時空流異常行為檢測模型[J]. 電子與信息學(xué)報, 2019, 41(5): 1137-1144. doi: 10.11999/JEIT180429
Ying CHEN, Dandan HE. Spatial-temporal Stream Anomaly Detection Based on Bayesian Fusion[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1137-1144. doi: 10.11999/JEIT180429
Citation: Ying CHEN, Dandan HE. Spatial-temporal Stream Anomaly Detection Based on Bayesian Fusion[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1137-1144. doi: 10.11999/JEIT180429

基于貝葉斯融合的時空流異常行為檢測模型

doi: 10.11999/JEIT180429
基金項目: 國家自然科學(xué)基金(61573168)
詳細信息
    作者簡介:

    陳瑩:女,1976年生,教授,博士生導(dǎo)師,主要研究方向為信息融合、模式識別等

    何丹丹:女,1993年生,碩士生,研究方向為異常行為檢測

    通訊作者:

    陳瑩 chenying@jiangnan.edu.cn

  • 中圖分類號: TP391

Spatial-temporal Stream Anomaly Detection Based on Bayesian Fusion

Funds: The National Natural Science Foundation of China (61573168)
  • 摘要:

    針對直接利用卷積自編碼網(wǎng)絡(luò)未考慮視頻時間信息的問題,該文提出基于貝葉斯融合的時空流異常行為檢測模型??臻g流模型采用卷積自編碼網(wǎng)絡(luò)對視頻單幀進行重構(gòu),時間流模型采用卷積長短期記憶(LSTM)編碼-解碼網(wǎng)絡(luò)對短期光流序列進行重構(gòu)。接著,分別計算空間流模型和時間流模型下每幀的重構(gòu)誤差,設(shè)計自適應(yīng)閾值對重構(gòu)誤差圖進行二值化,并基于貝葉斯準則對空間流和時間流下的重構(gòu)誤差進行融合,得到融合重構(gòu)誤差圖,并在此基礎(chǔ)上進行異常行為判斷。實驗結(jié)果表明,該算法在UCSD和Avenue視頻庫上的檢測效果優(yōu)于現(xiàn)有異常檢測算法。

  • 圖  1  基于貝葉斯融合的時空流異常行為檢測整體框架

    圖  2  空間流卷積網(wǎng)絡(luò)模型各層參數(shù)尺寸

    圖  3  Conv-LSTM編碼-解碼過程

    圖  4  基于貝葉斯的時空流融合圖

    圖  5  重構(gòu)圖顯示

    圖  6  可視化規(guī)則分數(shù)圖

    圖  7  UCSD Ped1和Ped2數(shù)據(jù)庫基于規(guī)則分數(shù)的ROC曲線

    表  1  基于規(guī)則分數(shù)的幀級別下的EER和AUC比較(%)

    方法UCSD Ped1 UCSD Ped2
    EERAUCEERAUC
    MPPCA+SF[16]32.074.2 36.061.3
    HOFME[19]33.172.720.087.5
    Conv-AE[9]27.976.821.790.0
    ConvLSTM-AE[20]N/A75.5N/A88.1
    Unmasking[21]N/A68.4N/A82.2
    Stack RNN[22]N/AN/AN/A92.2
    BFSTS(間隔/連續(xù)采樣)28/27.976.5/77.816.0/13.092.7/94.7
    下載: 導(dǎo)出CSV
  • LU Cewu, SHI Jianping, and JIA Jiaya. Abnormal event detection at 150 FPS in MATLAB[C]. Proceedings of 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 2720–2727.
    WEN Hui, GE Shiming, CHEN Shuixian, et al. Abnormal event detection via adaptive cascade dictionary learning[C]. Proceedings of 2015 IEEE International Conference on Image Processing, Quebec, Canada, 2015: 847–851.
    GUO Huiwen, WU Xinyu, CAI Shibo, et al. Quaternion discrete cosine transformation signature analysis in crowd scenes for abnormal event detection[J]. Neurocomputing, 2016, 204: 106–115. doi: 10.1016/j.neucom.2015.07.153
    SABOKROU M, FATHY M, HOSEINI M, et al. Real-time anomaly detection and localization in crowded scenes[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, USA, 2015: 56–62.
    SABOKROU M, FAYYAZ M, FATHY M, et al. Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes[J]. Computer Vision and Image Understanding, 2018, 172: 88–97. doi: 10.1016/j.cviu.2018.02.006
    XU Dan, YAN Yan, RICCI E, et al. Detecting anomalous events in videos by learning deep representations of appearance and motion[J]. Computer Vision and Image Understanding, 2016, 156: 117–127. doi: 10.1016/j.cviu.2016.10.010
    DIMOKRANITOU A. Adversarial autoencoders for anomalous event detection in images[D]. [Ph.D. dissertation], Purdue University, 2017.
    袁靜, 章毓晉. 融合梯度差信息的稀疏去噪自編碼網(wǎng)絡(luò)在異常行為檢測中的應(yīng)用[J]. 自動化學(xué)報, 2017, 43(4): 604–610. doi: 10.16383/j.aas.2017.c150667

    YUAN Jing and ZHANG Yujin. Application of sparse denoising auto encoder network with gradient difference information for abnormal action detection[J]. Acta Automatica Sinica, 2017, 43(4): 604–610. doi: 10.16383/j.aas.2017.c150667
    HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 733–742. doi: 10.1109/CVPR.2016.86.
    CHONG Y S and YONG H T. Abnormal event detection in videos using spatiotemporal autoencoder[C]. Proceedings of the 14th International Symposium on Neural Networks, Hokkaido, Japan, 2017: 189–196.
    FEICHTENHOFER C, PINZ A, and ZISSERMAN A. Convolutional two-stream network fusion for video action recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1933–1941. doi: 10.1109/CVPR.2016.213.
    SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 802–810.
    LIU Ce, FREEMAN W T, ADELSON E H, et al. Human-assisted motion annotation[C]. Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8.
    XIE Yulin, LU Huchuan, and YANG M H. Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processin, 2013, 22(5): 1689–1698. doi: 10.1109/TIP.2012.2216276
    LI Xiaohui, LU Huchuan, ZHANG Lihe, et al. Saliency detection via dense and sparse reconstruction[C]. Proceedings of 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 2976–2983.
    MAHADEVAN V, LI Weixin, BHALODIA V, et al. Anomaly detection in crowded scenes[C]. Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 1975–1981.
    DUCHI J, HAZAN E, and SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. The Journal of Machine Learning Research, 2011, 12: 2121–2159.
    GLOROT X and BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]. Proceedings of the 13th International Conference on Arti?cial Intelligence and Statistics, Sardinia, Italy, 2010: 249–256.
    WANG Tian and SNOUSSI H. Histograms of optical flow orientation for abnormal events detection[C]. Proceedings of 2013 IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Clearwater, USA, 2013: 45–52.
    LUO Weixin, LIU Wen, and GAO Shenghua. Remembering history with convolutional LSTM for anomaly detection[C]. Proceedings of 2017 IEEE International Conference on Multimedia and Expo, Hong Kong, China, 2017: 439–444.
    IONESCU R T, SMEUREANU S, ALEXE B, et al. Unmasking the abnormal events in video[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2895–2903.
    LUO Weixin, LIU Wen, and GAO Shenghua. A revisit of sparse coding based anomaly detection in stacked RNN framework[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 341–349.
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數(shù):  4031
  • HTML全文瀏覽量:  942
  • PDF下載量:  105
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-05-07
  • 修回日期:  2019-01-29
  • 網(wǎng)絡(luò)出版日期:  2019-02-20
  • 刊出日期:  2019-05-01

目錄

    /

    返回文章
    返回