一種基于動態(tài)環(huán)形振蕩器物理不可克隆函數(shù)統(tǒng)計模型的頻率排序算法
doi: 10.11999/JEIT180405
-
解放軍信息工程大學 ??鄭州 ??450001
Frequency Sorting Algorithm Based on Dynamic Ring Oscillator Physical Unclonable Function Statistical Model
-
The PLA Information Engineering University, Zhengzhou 450001, China
-
摘要:
針對現(xiàn)有環(huán)形振蕩器物理不可克隆函數(shù)(ROPUF)設計存在的可靠性和唯一性不高,導致在應用時安全性較差的問題,該文提出面向ROPUF的統(tǒng)計模型,定量分析了可靠性和唯一性的影響因素,發(fā)現(xiàn)增大延遲差能夠提高可靠性,減小環(huán)形振蕩器(RO)單元間的工藝差異可以提高唯一性。根據(jù)該模型結論,設計了基于mesh拓撲結構的動態(tài)RO單元,結合RO陣列頻率分布特性,設計了一種新的頻率排序算法,以增大延遲差和減小RO單元的工藝差異,從而提高ROPUF的可靠性和唯一性。結果表明,與其他改進設計的ROPUF相比,所提設計的可靠性和唯一性具有顯著優(yōu)勢,可達到99.642%和49.1%,且受溫度變化的影響最小。安全性分析證明,該文的設計具有很強的抗建模攻擊能力。
-
關鍵詞:
- 信息安全 /
- 物理不可克隆函數(shù) /
- 統(tǒng)計模型 /
- 頻率排序
Abstract:The existing Ring Oscillator (RO) Physical Unclonable Function (ROPUF) design has low reliability and uniqueness, resulting in poor application security. A statistical model for ROPUF is proposed, the factors of reliability and uniqueness are quantitatively analyzed, it is found that the larger delay difference can improve the reliability, and the lower process difference between RO units can improve the uniqueness. According to the conclusion of the model, a dynamic RO unit is designed based on the mesh topological structure. In combination with the frequency distribution characteristics of the RO array, a new frequency sorting algorithm is designed to increase the delay difference and reduce the process variation of the RO unit, thereby improving the reliability and uniqueness of ROPUF. The results show that compared with other improved ROPUF designs, the reliability and uniqueness of the proposed design has significant advantages, which can reach 99.642% and 49.1%, and temperature changes affect minimally them. It is verified by security analysis that the proposed design has strong anti-modeling attack capabilities.
-
表 2 頻率比較結果的概率分布
RO級數(shù) 3 5 7 9 概率 3 0/1 1 1 1 ${\rho _{\rm{A}}}$ 5 0 0/1 1 1 ${\rho _{\rm{B}}}$ 7 0 0 0/1 1 ${\rho _{\rm{C}}}$ 9 0 0 0 0/1 ${\rho _{\rm{D}}}$ 概率 ${\rho _{\rm{A}}}$ ${\rho _{\rm{B}}}$ ${\rho _{\rm{C}}}$ ${\rho _{\rm{D}}}$ 100% 下載: 導出CSV
表 3 頻率排序算法偽代碼
算法 1 頻率排序算法(FSA) (1) for C determining CLB-X do (2) $F = \{ f(x,1),f(x,2), ·\!·\!· ,f(x,N)\} $; (3) for i=1 to N do (4) ${Z_i} = {\rm COUNTER}(f(x,i))$; (5) end for (6) $\bar Z = {{\left( {{Z_1} + {Z_2} + ·\!·\!· + {Z_N}} \right)} / N}$; (7) for i=1 to N do (8) ${d_i} = \left| {{Z_i} - \bar Z} \right|$; (9) end for (10) if (x>y) then (11) gt(x, y)=1 (12) else (13) gt(x, y)=0 (14) end if (15) for k=1 to N–1 do (16) for j=1 to k do (17) S1=0 (18) ${L_k} = {S_j} + gt\left( {{d_{k + 1}},{d_j}} \right)$; (19) end for (20) end for (21) $R = {\rm Gray}\left( {{L_1}} \right){\rm{|}}|{\rm Gray}\left( {{L_2}} \right){\rm{|}}| ·\!·\!· |{\rm{|}}{\rm Gray}\left( {{L_{N - 1}}} \right)$; (22) end for (23) return (R) 下載: 導出CSV
表 5 RO單元資源利用效率對比
指標 傳統(tǒng)的ROPUF 可配置ROPUF D-ROPUF 本文的ROPUF CLB數(shù)量 2 1 1 2 Slice數(shù)量 5 3 4 4 LUT數(shù)量 6 6 8 15 RO單元可產生頻率數(shù) 1 8 4 18 抗建模攻擊能力 傳統(tǒng)的ROPUF<D-ROPUF<可配置ROPUF<本文的ROPUF 下載: 導出CSV
表 6 破解不同規(guī)格PUF所需攻擊次數(shù)的比較
t N Q 2 8 1.04×1011 18 8 1.35×1075 36 8 2.47×10176 18 16 1.99×10258 36 16 3.85×10502 下載: 導出CSV
-
GASSEND B, CLARKE D, DEVADAS S, et al. Silicon physical random functions[C]. ACM Conference on Computer and Communications Security, Washington, USA, 2002: 148–160. XU Xiaolin, BURLESON W, and HOLCOMB D E. Using statistical models to improve the reliability of delay-based PUFs[C]. 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, USA, 2016: 547–552. STANCIU A, MOLDOVEANU F D, and CIRSTEA M. A novel PUF-based encryption protocol for embedded System on Chip[C]. International Conference on Development and Application Systems, Suceava, Romania, 2016: 158–165. MAITI A and SCHAUMONT P. Improved ring oscillator PUF: An FPGA-friendly secure primitive[J]. Journal of Cryptology, 2004, 24(2): 375–397. doi: 10.1007/s00145-010-9088-4 AMSAAD F, CHOUDHURY M, CHAUDHURI C R, et al. An innovative delay based algorithm to boost PUF security against machine learning attacks[C]. Industrial Electronics, Technology & Automation, Bridgeport City, USA, 2017: 1–6. MAES R, HERREWEGE A V, and VERBAUWHEDE I. PUFKY: A fully functional PUF-based cryptographic key generator[C]. International Conference on Cryptographic Hardware and Embedded Systems, Leuven, Belgium, 2012: 302–319. LIU Weiqiang, YU Yifei, WANG Chenghua, et al. RO PUF design in FPGAs with new comparison strategies[C]. IEEE International Symposium on Circuits and Systems, Lisbon, Portugal, 2015: 77–80. KODYTEK F, LORENCZ R, BUCEK J, et al. Temperature dependence of ROPUF on FPGA[C]. Digital System Design, Limassol, Cyprus, 2016: 698–702. CHANG Hongliang and SACHIN S. Statistical timing analysis considering spatial correlation in a pert-like traversal[C]. International Conference on Computer Aided Design, San Jose, USA, 2003: 621–625. HADDAD P, FISCHER V, BERNARD F, et al. A physical approach for stochastic modeling of TERO-based TRNG[C]. International Conference on Cryptographic Hardware and Embedded Systems, Saint-Malo, France, 2015: 357–372. HERDER C, YU M D, KOUSHANFAR F, et al. Physical unclonable functions and applications: A tutorial[J]. Proceedings of the IEEE, 2014, 102(8): 1126–1141. doi: 10.1109/JPROC.2014.2320516 KODYTEK F, LORENCZ R, and BUCEK J. Improved ring oscillator PUF on FPGA and its properties[J]. Microprocessors & Microsystems, 2016, 47(1): 55–63. doi: 10.1016/j.micpro.2016.02.005 RAHMAN M T, FORTE D, RAHMAN F, et al. A pair selection algorithm for robust RO-PUF against environmental variations and aging[C]. IEEE International Conference on Computer Design, New York, USA, 2015: 415–418. RUHRMAIR U, SOLTER J, SEHNKE F, et al. PUF modeling attacks on simulated and silicon data[J]. IEEE Transactions on Information Forensics & Security, 2013, 8(11): 1876–1891. doi: 10.1109/TIFS.2013.2279798 項群良, 張培勇, 歐陽冬生, 等. 多頻率段物理不可克隆函數(shù)[J]. 電子與信息學報, 2012, 34(8): 2007–2012. doi: 10.3724/SP.J.1146.2011.01249XIANG Qunliang, ZHANG Peiyong, OUYANG Dongsheng, et al. An introduction to multi-frequency segment physical unclonable function[J]. Journal of Electronics &Information Technology, 2012, 34(8): 2007–2012. doi: 10.3724/SP.J.1146.2011.01249 -